12,088 research outputs found

    Postnikov extensions of ring spectra

    Full text link
    We give a functorial construction of k-invariants for ring spectra and use these to classify extensions in the Postnikov tower of a ring spectrum.Comment: This is the version published by Algebraic & Geometric Topology on 1 November 200

    I Cue the Alphabet

    Get PDF
    A collection of words and phrases beginning with each of the letters

    A curious example of two model categories and some associated differential graded algebras

    Full text link
    The paper gives a new proof that the model categories of stable modules for the rings Z/(p^2) and (Z/p)[\epsilon]/(\epsilon^2) are not Quillen equivalent. The proof uses homotopy endomorphism ring spectra. Our considerations lead to an example of two differential graded algebras which are derived equivalent but whose associated model categories of modules are not Quillen equivalent. As a bonus, we also obtain derived equivalent dgas with non-isomorphic K-theories

    The homotopy theory of coalgebras over a comonad

    Get PDF
    Let K be a comonad on a model category M. We provide conditions under which the associated category of K-coalgebras admits a model category structure such that the forgetful functor to M creates both cofibrations and weak equivalences. We provide concrete examples that satisfy our conditions and are relevant in descent theory and in the theory of Hopf-Galois extensions. These examples are specific instances of the following categories of comodules over a coring. For any semihereditary commutative ring R, let A be a dg R-algebra that is homologically simply connected. Let V be an A-coring that is semifree as a left A-module on a degreewise R-free, homologically simply connected graded module of finite type. We show that there is a model category structure on the category of right A-modules satisfying the conditions of our existence theorem with respect to the comonad given by tensoring over A with V and conclude that the category of V-comodules in the category of right A-modules admits a model category structure of the desired type. Finally, under extra conditions on R, A, and V, we describe fibrant replacements in this category of comodules in terms of a generalized cobar construction.Comment: 34 pages, minor corrections. To appear in the Proceedings of the London Mathematical Societ

    Waldhausen K-theory of spaces via comodules

    Get PDF
    Let XX be a simplicial set. We construct a novel adjunction between the categories of retractive spaces over XX and of X+X_{+}-comodules, then apply recent work on left-induced model category structures (arXiv:1401.3651v2 [math.AT],arXiv:1509.08154 [math.AT]) to establish the existence of a left proper, simplicial model category structure on the category of X+X_+-comodules, with respect to which the adjunction is a Quillen equivalence after localization with respect to some generalized homology theory. We show moreover that this model category structure stabilizes, giving rise to a model category structure on the category of Σ∞X+\Sigma^\infty X_{+}-comodule spectra. The Waldhausen KK-theory of XX, A(X)A(X), is thus naturally weakly equivalent to the Waldhausen KK-theory of the category of homotopically finite Σ∞X+\Sigma^\infty X_{+}-comodule spectra, with weak equivalences given by twisted homology. For XX simply connected, we exhibit explicit, natural weak equivalences between the KK-theory of this category and that of the category of homotopically finite Σ∞(ΩX)+\Sigma^{\infty}(\Omega X)_+-modules, a more familiar model for A(X)A(X). For XX not necessarily simply connected, we have localized versions of these results. For HH a simplicial monoid, the category of Σ∞H+\Sigma^{\infty}H_{+}-comodule algebras admits an induced model structure, providing a setting for defining homotopy coinvariants of the coaction of Σ∞H+\Sigma^{\infty}H_{+} on a Σ∞H+\Sigma^{\infty}H_{+}-comodule algebra, which is essential for homotopic Hopf-Galois extensions of ring spectra as originally defined by Rognes in arXiv:math/0502183v2} and generalized in arXiv:0902.3393v2 [math.AT]. An algebraic analogue of this was only recently developed, and then only over a field (arXiv:1401.3651v2 [math.AT]).Comment: 48 pages, v3: some technical modifications, to appear in Advances in Mathematic
    • …
    corecore