27 research outputs found
Efficacy of Prednisolone in Generated Myotubes Derived From Fibroblasts of Duchenne Muscular Dystrophy Patients
Duchenne muscular dystrophy (DMD) is a recessive X-linked form of muscular dystrophy characterized by progressive muscle degeneration. This disease is caused by the mutation or deletion of the dystrophin gene. Currently, there are no effective treatments and glucocorticoid administration is a standard care for DMD. However, the mechanism underlying prednisolone effects, which leads to increased walking, as well as decreased muscle wastage, is poorly understood. Our purpose in this study is to investigate the mechanisms of the efficacy of prednisolone for this disease. We converted fibroblasts of normal human cell line and a DMD patient sample to myotubes by MyoD transduction using a retroviral vector. In myotubes from the MyoD-transduced fibroblasts of the DMD patient, the myotube area was decreased and its apoptosis was increased. Furthermore, we confirmed that prednisolone could rescue these pathologies. Prednisolone increased the expression of not utrophin but laminin by down-regulation of MMP-2 mRNA. These results suggest that the up-regulation of laminin may be one of the mechanisms of the efficacy of prednisolone for DMD
Novel behaviors of anomalous Hall effect in TbFeCo ferrimagnetic thin films
We investigate the temperature dependence and the thickness dependence of anomalous Hall effect (AHE) of TbFeCo ultra-thin films under high magnetic field. The sign change on temperature dependence of AHE in 20nm-thick TbFeCo film with rare-earth (RE) rich composition was observed. The AHE sign at low temperature is negative while it gradually becomes positive as the temperature increases. Moreover, the AHE sign for 5nm-thick TbFeCo film remains positive while that for 50nm-thick TbFeCo film remains negative at temperature in the range from 5 K to 400 K. The similar thickness dependence of AHE in TM-rich samples was also observed. From the mean-field approximation, the sign change temperature in AHE is related to the compensation temperature and the existence of interfacial region, which has the TM-rich composition and the weak anisotropy. Therefore, We clarified that the novel behavior of AHE sign changes in TbFeCo thin films with different thickness can be explained by the interfacial layer with weak anisotropy and two phase model
Hydrogen transport property of polymer-derived cobalt cation-doped amorphous silica
International audienceThe effect of the local structure of Co-doped amorphous silica on the hydrogen transport property was studied with the aim to improve the high-temperature hydrogen-permselectivity of microporous amorphous silica-based membranes. Co-Doped silica materials with measured Co/Si atomic ratios ranging from 0.01 to 0.18 were successfully synthesized through the polymer-derived ceramic (PDC) route. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) analyses confirmed the amorphous state of the polymer-derived Co-doped silica, while both X-ray photoelectron and Fourier transform infrared (FT-IR) spectroscopy analyses revealed that the divalent Co cation (Co 2+) modified the matrix amorphous silica network to form hydrogen-bonded silanol. After dehydration treatment at 500°C in argon, hydrogen (H)/deuterium (D) isotope exchange behavior on the surface silanol groups (Si-OH/OD conversion) of the polymer-derived non-doped and Co-doped amorphous silica was in situ monitored by measuring diffuse reflectance infrared Fourier transform (DRIFT) spectra at 500°C. The self-diffusion coefficient for OH/OD conversion of free silanol groups of non-doped silica was 6.1 × 10 −15 m 2 s −1 , while that on the hydrogen bonded Si-OH was found to reach 15.6 × 10 −15 m 2 s −1 by Co-doping at the measured Co/Si atomic ratio of 0.05.The effect of the amount of Co 2+ doping on the hydrogen transport property was further studied by scanning transmission electron microscopy and electron energy loss spectroscopy (STEM-EELS) analyses, and it was suggested that a rather small amount of Co-doping, i.e. Co/Si atomic ratio of 0.05 was effective for enhancing high-temperature hydrogen permeance through microporous amorphous silica-based membranes
Preferred Pace Tapping Activates the Frontal Lobe
Background and aims : The purpose of the present study was to compare the activity of the frontal lobe
when performing tasks at two paces by functional near-infrared spectroscopy(fNIRS). M ethods : Fifty
healthy students from A University participated in the study. Oxygenated hemoglobin (oxy-Hb)
concentrations (Δ[oxy-Hb]) were monitored during 30s finger-tapping with the non-dominant hand.
There were two paces for finger-tapping : one pace the subject decided by themselves and the other pace
given by metronome. The subjects answered a questionnaire after fNIRS measurement. Results :
Performing tasks at Preferred Pace (PP) activates the frontal lobe of the orbito-frontal cortex area, and
it tends to induce a feeling of difficulty,especially in females. Conclusions : Performing repetitive tasks
at PP activates the frontal lobe. This finding will enable occupational therapists to select the subject’
s optimal pace according to the degree of attentional dysfunction
Reversible Redox Property of Co(III) in Amorphous Co-doped SiO2/γ-Al2O3 Layered Composites
International audienceThis paper reports on a unique reversible reducing and oxidizing (redox) property of Co(III) in Co-doped amorphous SiO2/γ-Al2O3 composites. The Fenton reaction during the H2O2catalyzed sol-gel synthesis utilized in this study lead to the partial formation of Co(III) in addition to Co(II) within the composites. High-resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) analyses for the composite powder sample with a composition of Al:Si:Co = 85:10:5 showed the amorphous state of the Co-doped SiO2 that modified γ-Al2O3 nanocrystalline surfaces. In situ X-ray absorption fine structure (XAFS) spectroscopic analysis suggested reversible redox reactions of Co species in the composite powder sample during heat-treatment under H2 at 500 °C followed by subsequent cooling to RT under Ar. Further analyses by in situ IR spectroscopy combined with cyclic temperature programmed reduction/desorption (TPR/TPD) measurements and X-ray photoelectron spectroscopic (XPS) analysis revealed that the alternating Co(III)/(II) redox reactions were associated with OH formation (hydrogenation)-deformation (dehydrogenation) of the amorphous aluminosilicate matrix formed in situ at the SiO2/γ-Al2O3 hetero interface, and the redox reactions were governed by the H2 partial pressure at 250-500 °C. As a result, a supported mesoporous γ-Al2O3/Co-doped amorphous SiO2/mesoporous γ-Al2O3 three-layered composite membrane exhibited an H2-triggered chemical valve property: mesopores under H2 flow (open) and micropores under He flow (closure) at 300-500 °C
Novel hydrogen chemisorption properties of amorphous ceramic compounds consisting of p-block elements: exploring Lewis acid–base Al–N pair sites formed in situ within polymer-derived silicon–aluminum–nitrogen-based systems
This paper reports the relationship between the H2 chemisorption properties and reversible structural reorientation of the possible active sites around Al formed in situ within polymer-derived ceramics (PDCs) based on an amorphous silicon–aluminum–nitrogen (Si–Al–N) system. Al-modified polysilazane, as a ceramic precursor, was first pyrolyzed at 1000 °C under flowing ammonia to generate a Si–Al–N-based ceramic. XRD and HRTEM analyses confirmed the amorphous state of the titled ceramics. N2 adsorption–desorption isotherm measurements and HAADF-STEM observation of amorphous SiAlN indicated that Al-incorporation in the early step of the process led to the generation of micro/mesoporosity in the amorphous ceramic with nanopores of 1 to 4 nm in size. XPS and pyridine sorption infra-red spectroscopy analyses revealed the in situ formation of Lewis acidic Al sites within the amorphous Si–Al–N surface network. As a result, the Si–Al–N compound was highly moisture sensitive. Then, to investigate the intrinsic properties of the highly reactive Al sites, the Si–Al–N compound was pretreated at 400–800 °C under an inert atmosphere. Temperature-programmed-desorption (TPD)-mass spectroscopy analysis of the pre-treated sample after H2 treatment above 100 °C resulted in the detection of a broad H2 desorption peak at around 100 to 350 °C. The H2 desorption peak intensity apparently increased when H2 treatment was performed at 150 °C, and the activation energy for H2 desorption was determined to be 44 kJ mol−1. 27Al MAS NMR spectroscopic analysis for the pre-treated sample showed reversible local structure reorientation around reactive Al nuclei, and formation and deformation of 5-fold coordinated Al by H2 chemisorption and desorption, respectively. In addition, the CO2 hydrogenation reaction on the pre-treated sample was successfully demonstrated by TPD measurements after exposure to a mixed gas of H2 and CO2 with a 4 : 1 ratio at 400 °C. These results suggest that highly distorted 4-fold coordinated Al serves as a Lewis acid–base Al–N pair site to promote H2 chemisorption at T > 100 °C followed by formation of a hydrogenated 5-coordinated Al unit where CO2 hydrogenation proceeds at T = 400 °C