2,481 research outputs found
Neutron electric dipole moment with external electric field method in lattice QCD
We discuss a possibility that the Neutron Electric Dipole Moment (NEDM) can
be calculated in lattice QCD simulations in the presence of the CP violating
term. In this paper we measure the energy difference between spin-up
and spin-down states of the neutron in the presence of an uniform and static
external electric field. We first test this method in quenched QCD with the RG
improved gauge action on a lattice at 2 GeV,
employing two different lattice fermion formulations, the domain-wall fermion
and the clover fermion for quarks, at relatively heavy quark mass . We obtain non-zero values of NEDM from calculations with both
fermion formulations. We next consider some systematic uncertainties of our
method for NEDM, using lattice at the same lattice spacing only
with the clover fermion. We finally investigate the quark mass dependence of
NEDM and observe a non-vanishing behavior of NEDM toward the chiral limit. We
interpret this behavior as a manifestation of the pathology in the quenched
approximation.Comment: LaTeX2e, 51 pages, 43 figures, uses revtex4 and graphicx, References
and comments added, typos corrected, accepted by PR
Lattice study of vacuum polarization function and determination of strong coupling constant
We calculate the vacuum polarization functions on the lattice using the
overlap fermion formulation.By matching the lattice data at large momentum
scales with the perturbative expansion supplemented by Operator Product
Expansion (OPE), we extract the strong coupling constant in
two-flavor QCD as =
GeV, where the errors are statistical and systematic, respectively. In
addition, from the analysis of the difference between the vector and
axial-vector channels, we obtain some of the four-quark condensates.Comment: 24 pages, 9 figures, enlarged version published in Phys. Rev.
Initial nucleon structure results with chiral quarks at the physical point
We report initial nucleon structure results computed on lattices with 2+1
dynamical M\"obius domain wall fermions at the physical point generated by the
RBC and UKQCD collaborations. At this stage, we evaluate only connected quark
contributions. In particular, we discuss the nucleon vector and axial-vector
form factors, nucleon axial charge and the isovector quark momentum fraction.
From currently available statistics, we estimate the stochastic accuracy of the
determination of and to be around 10%, and we expect to
reduce that to 5% within the next year. To reduce the computational cost of our
calculations, we extensively use acceleration techniques such as low-eigenmode
deflation and all-mode-averaging (AMA). We present a method for choosing
optimal AMA parameters.Comment: 7 pages, 11 figures; talk presented at the 32nd International
Symposium on Lattice Field Theory, 23-28 June, 2014, Columbia University, New
York, US
Metaplectic Ice
Spherical Whittaker functions on the metaplectic n-fold cover of GL(r+1) over
a nonarchimedean local field containing n distinct n-th roots of unity may be
expressed as the partition functions of statistical mechanical systems that are
variants of the six-vertex model. If n=1 then in view of the Casselman-Shalika
formula this fact is related to Tokuyama's deformation of the Weyl character
formula. It is shown that various properties of these Whittaker functions may
be expressed in terms of the commutativity of row transfer matrices for the
system. Potentially these properties (which are already proved by other
methods, but very nontrivial) are amenable to proof by the Yang-Baxter
equation
Nucleon sigma term and strange quark content from lattice QCD with exact chiral symmetry
We calculate the nucleon sigma term in two-flavor lattice QCD utilizing the
Feynman-Hellman theorem. Both sea and valence quarks are described by the
overlap fermion formulation, which preserves exact chiral and flavor symmetries
on the lattice. We analyse the lattice data for the nucleon mass using the
analytical formulae derived from the baryon chiral perturbation theory. From
the data at valence quark mass set different from sea quark mass, we may
extract the sea quark contribution to the sigma term, which corresponds to the
strange quark content. We find that the strange quark content is much smaller
than the previous lattice calculations and phenomenological estimates.Comment: 27 page
Neutron electric dipole moment from lattice QCD
We carry out a feasibility study for the lattice QCD calculation of the
neutron electric dipole moment (NEDM) in the presence of the term. We
develop the strategy to obtain the nucleon EDM from the CP-odd electromagnetic
form factor at small , in which NEDM is given by where is the momentum transfer and is the
nucleon mass. We first derive a formula which relates , a matrix element
of the electromagnetic current between nucleon states, with vacuum expectation
values of nucleons and/or the current. In the expansion of , the
parity-odd part of the nucleon-current-nucleon three-point function contains
contributions not only from the parity-odd form factors but also from the
parity-even form factors multiplied by the parity-odd part of the nucleon
two-point function, and therefore the latter contribution must be subtracted to
extract . We then perform an explicit lattice calculation employing the
domain-wall quark action with the RG improved gauge action in quenched QCD at
GeV on a lattice. At the quark mass
, corresponding to , we accumulate 730
configurations, which allow us to extract the parity-odd part in both two- and
three-point functions. Employing two different Dirac matrix
projections, we show that a consistent value for cannot be obtained
without the subtraction described above. We obtain 0.024(5) fm for the neutron and
0.021(6) fm for the
proton.Comment: LaTeX2e, 43 pages, 42 eps figures, uses revtex4 and graphicx,
comments added and typos corrected, final version to appear in Phys. Rev.
The slow release of BMP-7 at a low dose accelerates dental implant healing in an osteopenic environment.
The aim of the present study was to investigate in vivo whether bone morphogenetic protein-7 (BMP-7) was able to promote and accelerate dental implant healing at a low dose in an osteopenic environment by using a delayed drug-release system. Skeletally mature Chinese goats, having physiologically osteopenic (osteoporotic-like) facial bones, served as an animal model. Dental implants were provided with a delayed-release drug-delivery system and BMP-7 was applied at three different dosages. The implants, inserted into healed extraction sockets, were removed 1, 2 and 3 weeks after surgery. Quantification of osseointegration and formation of new bone in the peri- implant space were measured histomorphometrically. Data revealed no evidence of any adverse drug effect at or near the implantation sites. After the first postoperative week, bone neoformation was minimal; after the second week, peri-implant bone formation appeared, particularly in the groups with low dosages of BMP-7. After 3 weeks, new-bone volume was the largest in the group with the lowest (near-physiological) dosage of BMP-7, also showing the highest efficacy of BMP-7. Other dosage or release modes were found to be significantly less effective. BMP-7 was highly efficacious in promoting and accelerating bone formation in the peri-implant space in a hostile osteopenic environment if released by a slow-mode mechanism over time at near physiological activities. Therefore, biological functionalisation of dental implants by a high-power osteogenic factor may improve their healing success in hostile bony environments (osteopenia, osteoporosis, bone atrophy etc.)
Rectangular Wilson Loops at Large N
This work is about pure Yang-Mills theory in four Euclidean dimensions with
gauge group SU(N). We study rectangular smeared Wilson loops on the lattice at
large N and relatively close to the large-N transition point in their
eigenvalue density. We show that the string tension can be extracted from these
loops but their dependence on shape differs from the asymptotic prediction of
effective string theory.Comment: 47 pages, 21 figures, 8 table
- …