355 research outputs found
Long Term Versus Temporary Certified Emission Reductions in Forest Carbon-Sequestration Programs
Under the Clean Development Mechanism (CDM) of the Kyoto Protocol, forest projects can receive returns for carbon sequestration via two credit instruments: temporary (tCERs) or long-term certified emission reductions (lCERs). This article develops a theoretical model of optimal harvesting strategies that compares private optimal harvest decision under these two instruments. We find that risk neutral landowners are likely to prefer instituting lCERs over tCERs to maximize surplus. A particular type of early harvest penalty implemented under the lCERs is critical in determining the length of rotation intervals and the carbon credit supply. When this penalty is an increasing function of the difference in biomass before and after harvesting across verification periods, the landowner may choose longer or shorter rotation intervals compared to the Faustmann rotation. The resulting supply curve may have a backward bending region over a range of carbon prices.forest rotation, long term certified emission reductions (lCERs), carbon sequestration
Long Term Versus Temporary Certified Emission Reductions in Forest Carbon-Sequestration Programs
Under the Clean Development Mechanism (CDM) of the Kyoto Protocol, forest projects can receive returns for carbon sequestration via two credit instruments: temporary (tCERs) or long-term certified emission reductions (lCERs). This article develops a theoretical model of optimal harvesting strategies that compares private optimal harvest decision under these two instruments. We find that risk neutral landowners are likely to prefer instituting lCERs over tCERs to maximize surplus. A particular type of early harvest penalty implemented under the lCERs is critical in determining the length of rotation intervals and the carbon credit supply. When this penalty is an increasing function of the difference in biomass before and after harvesting across verification periods, the landowner may choose longer or shorter rotation intervals compared to the Faustmann rotation. The resulting supply curve may have a backward bending region over a range of carbon prices.forest rotation, long term certified emission reductions (lCERs), carbon sequestration, Environmental Economics and Policy, Land Economics/Use, Resource /Energy Economics and Policy, Q2, Q54, Q23,
Two dimensional periodic box-ball system and its fundamental cycle
We study a 2-dimensional Box-Ball system which is a ultradiscrete analog of
the discrete KP equation. We construct an algorithm to calculate the
fundamental cycle, which is an important conserved quantity of the 2-dim.
Box-Ball system with periodic boundary condition, by using the tropical curve
theory.Comment: 16 pages, 5 figure
Preheating after N-flation
We study preheating in N-flation, assuming the Mar\v{c}enko-Pastur mass
distribution, equal energy initial conditions at the beginning of inflation and
equal axion-matter couplings, where matter is taken to be a single, massless
bosonic field. By numerical analysis we find that preheating via parametric
resonance is suppressed, indicating that the old theory of perturbative
preheating is applicable. While the tensor-to-scalar ratio, the non-Gaussianity
parameters and the scalar spectral index computed for N-flation are similar to
those in single field inflation (at least within an observationally viable
parameter region), our results suggest that the physics of preheating can
differ significantly from the single field case.Comment: 14 pages, 14 figures, references added, fixed typo
The Rolling Tachyon Boundary Conformal Field Theory on an Orbifold
We consider the non-trivial boundary conformal field theory with exactly
marginal boundary deformation. In recent years this deformation has been
studied in the context of rolling tachyons and S-branes in string theory. Here
we study the problem directly from an open string point of view, at one loop.
We formulate the theory of the Z_2 reflection orbifold. To do so, we extend
fermionization techniques originally introduced by Polchinski and Thorlacius.
We also explain how to perform the open string computations at arbitrary
(rational) radius, by consistently constructing the corresponding shift
orbifold, and show in what sense these are related to known boundary states. In
a companion paper, we use these results in a cosmological context involving
decaying branes.Comment: 23 page
Cortical stimulation consolidates and reactivates visual experience: neural plasticity from magnetic entrainment of visual activity
Delivering transcranial magnetic stimulation (TMS) shortly after the end of a visual stimulus can cause a TMS-induced ‘replay’ or ‘visual echo’ of the visual percept. In the current study, we find an entrainment effect that after repeated elicitations of TMS-induced replay with the same visual stimulus, the replay can be induced by TMS alone, without the need for the physical visual stimulus. In Experiment 1, we used a subjective rating task to examine the phenomenal aspects of TMS-entrained replays. In Experiment 2, we used an objective masking paradigm to quantitatively validate the phenomenon and to examine the involvement of low-level mechanisms. Results showed that the TMS-entrained replay was not only phenomenally experienced (Exp.1), but also able to hamper letter identification (Exp.2). The findings have implications in several directions: (1) the visual cortical representation and iconic memory, (2) experience-based plasticity in the visual cortex, and (3) their relationship to visual awareness
Tropical Krichever construction for the non-periodic box and ball system
A solution for an initial value problem of the box and ball system is
constructed from a solution of the periodic box and ball system. The
construction is done through a specific limiting process based on the theory of
tropical geometry. This method gives a tropical analogue of the Krichever
construction, which is an algebro-geometric method to construct exact solutions
to integrable systems, for the non-periodic system.Comment: 13 pages, 1 figur
Coulomb-gas formulation of SU(2) branes and chiral blocks
We construct boundary states in WZNW models using the bosonized
Wakimoto free-field representation and study their properties. We introduce a
Fock space representation of Ishibashi states which are coherent states of
bosons with zero-mode momenta (boundary Coulomb-gas charges) summed over
certain lattices according to Fock space resolution of . The Virasoro
invariance of the coherent states leads to families of boundary states
including the B-type D-branes found by Maldacena, Moore and Seiberg, as well as
the A-type corresponding to trivial current gluing conditions. We then use the
Coulomb-gas technique to compute exact correlation functions of WZNW primary
fields on the disk topology with A- and B-type Cardy states on the boundary. We
check that the obtained chiral blocks for A-branes are solutions of the
Knizhnik-Zamolodchikov equations.Comment: 14 pages, 3 figures, revtex4. Essentially the published versio
X-ray Astronomy in the Laboratory with a Miniature Compact Object Produced by Laser-Driven Implosion
Laboratory spectroscopy of non-thermal equilibrium plasmas photoionized by
intense radiation is a key to understanding compact objects, such as black
holes, based on astronomical observations. This paper describes an experiment
to study photoionizing plasmas in laboratory under well-defined and genuine
conditions. Photoionized plasma is here generated using a 0.5-keV Planckian
x-ray source created by means of a laser-driven implosion. The measured x-ray
spectrum from the photoionized silicon plasma resembles those observed from the
binary stars Cygnus X-3 and Vela X-1 with the Chandra x-ray satellite. This
demonstrates that an extreme radiation field was produced in the laboratory,
however, the theoretical interpretation of the laboratory spectrum
significantly contradicts the generally accepted explanations in x-ray
astronomy. This model experiment offers a novel test bed for validation and
verification of computational codes used in x-ray astronomy.Comment: 5 pages, 4 figures are included. This is the original submitted
version of the manuscript to be published in Nature Physic
Distortions of Subjective Time Perception Within and Across Senses
Background: The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood.
Methodology/Findings: We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations.
Conclusions/Significance: These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions
- …
