23 research outputs found

    ECOMICS: A Web-Based Toolkit for Investigating the Biomolecular Web in Ecosystems Using a Trans-omics Approach

    Get PDF
    Ecosystems can be conceptually thought of as interconnected environmental and metabolic systems, in which small molecules to macro-molecules interact through diverse networks. State-of-the-art technologies in post-genomic science offer ways to inspect and analyze this biomolecular web using omics-based approaches. Exploring useful genes and enzymes, as well as biomass resources responsible for anabolism and catabolism within ecosystems will contribute to a better understanding of environmental functions and their application to biotechnology. Here we present ECOMICS, a suite of web-based tools for ECosystem trans-OMICS investigation that target metagenomic, metatranscriptomic, and meta-metabolomic systems, including biomacromolecular mixtures derived from biomass. ECOMICS is made of four integrated webtools. E-class allows for the sequence-based taxonomic classification of eukaryotic and prokaryotic ribosomal data and the functional classification of selected enzymes. FT2B allows for the digital processing of NMR spectra for downstream metabolic or chemical phenotyping. Bm-Char allows for statistical assignment of specific compounds found in lignocellulose-based biomass, and HetMap is a data matrix generator and correlation calculator that can be applied to trans-omics datasets as analyzed by these and other web tools. This web suite is unique in that it allows for the monitoring of biomass metabolism in a particular environment, i.e., from macromolecular complexes (FT2DB and Bm-Char) to microbial composition and degradation (E-class), and makes possible the understanding of relationships between molecular and microbial elements (HetMap). This website is available to the public domain at: https://database.riken.jp/ecomics/

    Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae—A 2D NMR Metabolomics Study

    No full text
    Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of 1H-13C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae

    Heat-map like bird's eye viewing of FTIR spectra.

    No full text
    <p>Horizontal axis shows wave number and vertical axis shows different samples, and signal intensity (arbitrary unit) are shown according to color key. Top nine samples in vertical axis are standard compounds such as lignin, sugars, peptide and fatty acid. NT, nontreatment. 200, 250, 250, 300 and 350 samples were torrefied at 200°C, 250°C, 300°C, and 350°C, respectively.</p

    Comparison of non-treated and heat treated <i>Jatropha</i> biomass of 2D <sup>1</sup>H–<sup>13</sup>C HSQC spectra.

    No full text
    <p>The 2D HSQC spectra of the seed coats heated at 200°C (lighter) and 350°C (darker) were divided into four regions as follows: lignin side-chain (red), polysaccharide (blue), polysaccharide anomeric (purple), lignin aromatic (brown), and other aliphatics (green) (A). Heat map of signals assigned to polysaccharides residues (B), lignin units and lignin substructure (C) detected using <sup>1</sup>H–<sup>13</sup>C HSQC NMR analysis of the non-treated (NT) samples and stem, xylem, and the seed coat samples heated at 200°C (200), 250°C (250), 300°C (300), and 350°C (350).</p

    Assignment of functional groups in FTIR spectra and the spectra of different samples.

    No full text
    <p>Assignment of functional groups in FTIR spectra and the spectra of different samples.</p

    Chemical Profiling of <i>Jatropha</i> Tissues under Different Torrefaction Conditions: Application to Biomass Waste Recovery

    No full text
    <div><p>Gradual depletion of the world petroleum reserves and the impact of environmental pollution highlight the importance of developing alternative energy resources such as plant biomass. To address these issues, intensive research has focused on the plant <i>Jatropha curcas</i>, which serves as a rich source of biodiesel because of its high seed oil content. However, producing biodiesel from <i>Jatropha</i> generates large amounts of biomass waste that are difficult to use. Therefore, the objective of our research was to analyze the effects of different conditions of torrefaction on <i>Jatropha</i> biomass. Six different types of <i>Jatropha</i> tissues (seed coat, kernel, stem, xylem, bark, and leaf) were torrefied at four different temperature conditions (200°C, 250°C, 300°C, and 350°C), and changes in the metabolite composition of the torrefied products were determined by Fourier transform-infrared spectroscopy and nuclear magnetic resonance analyses. Cellulose was gradually converted to oligosaccharides in the temperature range of 200°C–300°C and completely degraded at 350°C. Hemicellulose residues showed different degradation patterns depending on the tissue, whereas glucuronoxylan efficiently decomposed between 300°C and 350°C. Heat-induced depolymerization of starch to maltodextrin started between 200°C and 250°C, and oligomer sugar structure degradation occurred at higher temperatures. Lignin degraded at each temperature, e.g., syringyl (S) degraded at lower temperatures than guaiacyl (G). Finally, the toxic compound phorbol ester degraded gradually starting at 235°C and efficiently just below 300°C. These results suggest that torrefaction is a feasible treatment for further processing of residual biomass to biorefinery stock or fertilizer.</p></div

    Schematic conceptual figure of the analysis of heat treated <i>Jatropha</i> biomass and its future industrial and agricultural application.

    No full text
    <p>Torrefaction was applied and compounds present in the biomass were analyzed using FTIR and NMR techniques. FTIR characterized the total residue generated by the treatments, and NMR characterized samples prepared according to their solubilities and molecular weights. These analyses indicate that torrefaction can be more efficiently applied to utilize biomass (A). Scheme of <i>Jatropha curcas</i> biodiesel production from farming, pruning, harvesting, and oil extraction. These processes generate biomass from plant tissues and the seed cake (B).</p

    Cellulose Digestion and Metabolism Induced Biocatalytic Transitions in Anaerobic Microbial Ecosystems

    No full text
    Anaerobic digestion of highly polymerized biomass by microbial communities present in diverse microbial ecosystems is an indispensable metabolic process for biogeochemical cycling in nature and for industrial activities required to maintain a sustainable society. Therefore, the evaluation of the complicated microbial metabolomics presents a significant challenge. We here describe a comprehensive strategy for characterizing the degradation of highly crystallized bacterial cellulose (BC) that is accompanied by metabolite production for identifying the responsible biocatalysts, including microorganisms and their metabolic functions. To this end, we employed two-dimensional solid- and one-dimensional solution-state nuclear magnetic resonance (NMR) profiling combined with a metagenomic approach using stable isotope labeling. The key components of biocatalytic reactions determined using a metagenomic approach were correlated with cellulose degradation and metabolic products. The results indicate that BC degradation was mediated by cellulases that contain carbohydrate-binding modules and that belong to structural type A. The degradation reactions induced the metabolic dynamics of the microbial community and produced organic compounds, such as acetic acid and propionic acid, mainly metabolized by clostridial species. This combinatorial, functional and structural metagenomic approach is useful for the comprehensive characterization of biomass degradation, metabolic dynamics and their key components in diverse ecosystems
    corecore