107 research outputs found

    Charge-tagging liquid chromatography–mass spectrometry methodology targeting oxysterol diastereoisomers

    Get PDF
    The introduction of a hydroxy group to the cholesterol skeleton introduces not only the possibility for positional isomers but also diastereoisomers, where two or more isomers have different configurations at one or more of the stereocentres but are not mirror images. The differentiation of diastereoisomers is important as differing isomers can have differing biochemical properties and are formed via different biochemical pathways. Separation of diasterioisomers is not always easy by chromatographic methods. Here we demonstrate, by application of charge-tagging and derivatisation with the Girard P reagent, the separation and detection of biologically relevant diastereoisomers using liquid chromatography – mass spectrometry with multistage fragmentation

    Sterols and oxysterols in plasma from Smith-Lemli-Opitz syndrome patients

    Get PDF
    Smith-Lemli-Opitz syndrome (SLOS) is a severe autosomal recessive disorder resulting from defects in the cholesterol synthesising enzyme 7-dehydrocholesterol reductase (Δ7-sterol reductase, DHCR7, EC 1.3.1.21) leading to a build-up of the cholesterol precursor 7-dehydrocholesterol (7-DHC) in tissues and blood plasma. Although the underling enzyme deficiency associated with SLOS is clear there are likely to be multiple mechanisms responsible for SLOS pathology. In an effort to learn more of the aetiology of SLOS we have analysed plasma from SLOS patients to search for metabolites derived from 7-DHC which may be responsible for some of the pathology. We have identified a novel hydroxy-8-dehydrocholesterol, which is either 24- or 25-hydroxy-8-dehydrocholesterol and also the known metabolites 26-hydroxy-8-dehydrocholesterol, 4-hydroxy-7-dehydrocholesterol, 3β,5α-dihydroxycholest-7-en-6-one and 7α,8α-epoxycholesterol. None of these metabolites are detected in control plasma at quantifiable levels (0.5 ng/mL)

    Cholesterolomics: An update

    Get PDF
    Cholesterolomics can be regarded as the identification and quantification of cholesterol, its precursors post squalene, and metabolites of cholesterol and of its precursors, in a biological sample. These molecules include 1,25-dihydroxyvitamin D3, steroid hormones and bile acids and intermediates in their respective biosynthetic pathways. In this short article we will concentrate our attention on intermediates in bile acid biosynthesis pathways, in particular oxysterols and cholestenoic acids. These molecular classes are implicated in the aetiology of a diverse array of diseases including autoimmune disease, Parkinson's disease, motor neuron disease, breast cancer, the lysosomal storage disease Niemann-Pick type C and the autosomal recessive disorder Smith-Lemli-Opitz syndrome. Mass spectrometry (MS) is the dominant technology for sterol analysis including both gas-chromatography (GC)-MS and liquid chromatography (LC)-MS and more recently matrix-assisted laser desorption/ionisation (MALDI)-MS for tissue imaging studies. Here we will discuss exciting biological findings and recent analytical improvements

    A Phase 1, Randomized, Double‐Blind, Placebo‐Controlled, Single Ascending Dose Trial of AWZ1066S, an Anti‐ Wolbachia Candidate Macrofilaricide

    Get PDF
    AWZ1066S has been developed as a potential treatment for the neglected tropical diseases lymphatic filariasis and onchocerciasis. AWZ1066S targets the Wolbachia bacterial endosymbiont present in the causative nematode parasites. This phase 1, first‐in‐human study aimed to assess the safety and pharmacokinetics of AWZ1066S in healthy human participants. In a randomized double‐blind, placebo‐controlled, single ascending dose study, healthy adults received a single oral dose of AWZ1066S (or placebo) and were followed up for 10 days. The planned single doses of AWZ1066S ranged from 100 to 1600 mg, and each dose was administered to a cohort of 8 participants (6 AWZ1066S and 2 placebo). In total 30 people participated, 18 (60%) female, median age 30.0 years (minimum 20, maximum 61). The cohorts administered 100, 200, 300, and 400 mg of AWZ1066S progressed unremarkably. After single 700‐mg doses all 4 participants developed symptoms of acute gastritis and transient increases in liver enzymes. The severity of these adverse events ranged from mild to severe, with 1 participant needing hospital admission. Pharmacokinetic analysis indicated that AWZ1066S is rapidly absorbed with predictable pharmacokinetics. In conclusion, safety concerns prevented this study from reaching the human exposures needed for AWZ1066S to be clinically effective against lymphatic filariasis and onchocerciasis

    New methods for analysis of oxysterols and related compounds by LC–MS

    Get PDF
    Oxysterols are oxygenated forms of cholesterol or its precursors. They are formed enzymatically and via reactive oxygen species. Oxysterols are intermediates in bile acid and steroid hormone biosynthetic pathways and are also bioactive molecules in their own right, being ligands to nuclear receptors and also regulators of the processing of steroid regulatory element-binding proteins (SREBPs) to their active forms as transcription factors regulating cholesterol and fatty acid biosynthesis. Oxysterols are implicated in the pathogenesis of multiple disease states ranging from atherosclerosis and cancer to multiple sclerosis and other neurodegenerative diseases including Alzheimer’s and Parkinson’s disease. Analysis of oxysterols is challenging on account of their low abundance in biological systems in comparison to cholesterol, and due to the propensity of cholesterol to undergo oxidation in air to generate oxysterols with the same structures as those present endogenously. In this article we review the mass spectrometry-based methods for oxysterol analysis paying particular attention to analysis by liquid chromatography – mass spectrometry (LC-MS)

    Effect of cholesterol on the dipole potential of lipid membranes

    Get PDF
    The membrane dipole potential, ψd, is an electrical potential difference with a value typically in the range 150 – 350 mV (positive in the membrane interior) which is located in the lipid headgroup region of the membrane, between the linkage of the hydrocarbon chains to the phospholipid glycerol backbone and the adjacent aqueous solution. At its physiological level in animal plasma membranes (up to 50 mol%), cholesterol makes a significant contribution to ψd of approximately 65 mV; the rest arising from other lipid components of the membrane, in particular phospholipids. Via its effect on ψd, cholesterol may modulate the activity of membrane proteins. This could occur through preferential stabilization of protein conformational states. Based on its effect on ψd, cholesterol would be expected to favour protein conformations associated with a small local hydrophobic membrane thickness. Via its membrane condensing effect, which also produces an increase in ψd, cholesterol could further modulate interactions of polybasic cytoplasmic extensions of membrane proteins, in particular P-type ATPases, with anionic lipid headgroups on the membrane surface, thus leading to enhanced conformational stabilization effects and changes to ion pumping activity.Australian Research Counci

    ダイオキシン ノ タイシャ ニ カカワル ホニュウ ドウブツ シトクロム P450 ノ コウゾウ ト キノウ ノ カイセキ

    No full text
    京都大学0048新制・課程博士博士(農学)甲第12357号農博第1538号新制||農||923(附属図書館)学位論文||H18||N4115(農学部図書室)24193UT51-2006-J349京都大学大学院農学研究科食品生物科学専攻(主査)教授 井上 國世, 教授 吉川 正明, 教授 村田 幸作学位規則第4条第1項該当Doctor of Agricultural ScienceKyoto UniversityDA

    Cholecalciferol

    No full text

    Cytochrome P450 2S1 is Reduced by NADPH-Cytochrome P450 Reductase

    No full text
    corecore