26,007 research outputs found
Thermal And Mechanical Analysis of High-power Light-emitting Diodes with Ceramic Packages
In this paper we present the thermal and mechanical analysis of high-power
light-emitting diodes (LEDs) with ceramic packages. Transient thermal
measurements and thermo-mechanical simulation were performed to study the
thermal and mechanical characteristics of ceramic packages. Thermal resistance
from the junction to the ambient was decreased from 76.1 oC/W to 45.3 oC/W by
replacing plastic mould to ceramic mould for LED packages. Higher level of
thermo-mechanical stresses in the chip were found for LEDs with ceramic
packages despite of less mismatching coefficients of thermal expansion
comparing with plastic packages. The results suggest that the thermal
performance of LEDs can be improved by using ceramic packages, but the mounting
process of the high power LEDs with ceramic packages is critically important
and should be in charge of delaminating interface layers in the packages.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles
We study the dynamics of polymer chains in a bath of self-propelled particles
(SPP) by extensive Langevin dynamics simulations in a two dimensional system.
Specifically, we analyse the polymer looping properties versus the SPP activity
and investigate how the presence of the active particles alters the chain
conformational statistics. We find that SPPs tend to extend flexible polymer
chains while they rather compactify stiffer semiflexible polymers, in agreement
with previous results. Here we show that larger activities of SPPs yield a
higher effective temperature of the bath and thus facilitate looping kinetics
of a passive polymer chain. We explicitly compute the looping probability and
looping time in a wide range of the model parameters. We also analyse the
motion of a monomeric tracer particle and the polymer's centre of mass in the
presence of the active particles in terms of the time averaged mean squared
displacement, revealing a giant diffusivity enhancement for the polymer chain
via SPP pooling. Our results are applicable to rationalising the dimensions and
looping kinetics of biopolymers at constantly fluctuating and often actively
driven conditions inside biological cells or suspensions of active colloidal
particles or bacteria cells.Comment: 15 pages, 9 figures, IOPLaTe
Sine-Gordon Soliton on a Cnoidal Wave Background
The method of Darboux transformation, which is applied on cnoidal wave
solutions of the sine-Gordon equation, gives solitons moving on a cnoidal wave
background. Interesting characteristics of the solution, i.e., the velocity of
solitons and the shift of crests of cnoidal waves along a soliton, are
calculated. Solutions are classified into three types (Type-1A, Type-1B,
Type-2) according to their apparent distinct properties.Comment: 11 pages, 5 figures, Contents change
Spin relaxation in mesoscopic superconducting Al wires
We studied the diffusion and the relaxation of the polarized quasiparticle
spins in superconductors. To that end, quasiparticles of polarized spins were
injected through an interface of a mesoscopic superconducting Al wire in
proximity contact with an overlaid ferromagnetic Co wire in the single-domain
state. The superconductivity was observed to be suppressed near the
spin-injecting interface, as evidenced by the occurrence of a finite voltage
for a bias current below the onset of the superconducting transition. The spin
diffusion length, estimated from finite voltages over a certain length of Al
wire near the interface, was almost temperature independent in the temperature
range sufficiently below the superconducting transition but grew as the
transition temperature was approached. This temperature dependence suggests
that the relaxation of the spin polarization in the superconducting state is
governed by the condensation of quasiparticles to the paired state. The spin
relaxation in the superconducting state turned out to be more effective than in
the normal state.Comment: 9 pages, 8 figure
Real-time observation of a coherent lattice transformation into a high-symmetry phase
Excursions far from their equilibrium structures can bring crystalline solids
through collective transformations including transitions into new phases that
may be transient or long-lived. Direct spectroscopic observation of
far-from-equilibrium rearrangements provides fundamental mechanistic insight
into chemical and structural transformations, and a potential route to
practical applications, including ultrafast optical control over material
structure and properties. However, in many cases photoinduced transitions are
irreversible or only slowly reversible, or the light fluence required exceeds
material damage thresholds. This precludes conventional ultrafast spectroscopy
in which optical excitation and probe pulses irradiate the sample many times,
each measurement providing information about the sample response at just one
probe delay time following excitation, with each measurement at a high
repetition rate and with the sample fully recovering its initial state in
between measurements. Using a single-shot, real-time measurement method, we
were able to observe the photoinduced phase transition from the semimetallic,
low-symmetry phase of crystalline bismuth into a high-symmetry phase whose
existence at high electronic excitation densities was predicted based on
earlier measurements at moderate excitation densities below the damage
threshold. Our observations indicate that coherent lattice vibrational motion
launched upon photoexcitation with an incident fluence above 10 mJ/cm2 in bulk
bismuth brings the lattice structure directly into the high-symmetry
configuration for tens of picoseconds, after which carrier relaxation and
diffusion restore the equilibrium lattice configuration.Comment: 22 pages, 4 figure
Theoretical analysis for critical fluctuations of relaxation trajectory near a saddle-node bifurcation
A Langevin equation whose deterministic part undergoes a saddle-node
bifurcation is investigated theoretically. It is found that statistical
properties of relaxation trajectories in this system exhibit divergent
behaviors near a saddle-node bifurcation point in the weak-noise limit, while
the final value of the deterministic solution changes discontinuously at the
point. A systematic formulation for analyzing a path probability measure is
constructed on the basis of a singular perturbation method. In this
formulation, the critical nature turns out to originate from the neutrality of
exiting time from a saddle-point. The theoretical calculation explains results
of numerical simulations.Comment: 18pages, 17figures.The version 2, in which minor errors have been
fixed, will be published in Phys. Rev.
Influence Functionals and the Accelerating Detector
The influence functional is derived for a massive scalar field in the ground
state, coupled to a uniformly accelerating DeWitt monopole detector in
dimensional Minkowski space. This confirms the local nature of the Unruh
effect, and provides an exact solution to the problem of the accelerating
detector without invoking a non-standard quantization. A directional detector
is presented which is efficiently decohered by the scalar field vacuum, and
which illustrates an important difference between the quantum mechanics of
inertial and non-inertial frames. From the results of these calculations, some
comments are made regarding the possibility of establishing a quantum
equivalence principle, so that the Hawking effect might be derived from the
Unruh effect.Comment: 32 page
The order-disorder transition in colloidal suspensions under shear flow
We study the order-disorder transition in colloidal suspensions under shear
flow by performing Brownian dynamics simulations. We characterize the
transition in terms of a statistical property of time-dependent maximum value
of the structure factor. We find that its power spectrum exhibits the power-law
behaviour only in the ordered phase. The power-law exponent is approximately -2
at frequencies greater than the magnitude of the shear rate, while the power
spectrum exhibits the -type fluctuations in the lower frequency regime.Comment: 11 pages, 10 figures, v.2: We have made some small improvements on
presentation
- …