3,833 research outputs found

    Fuzz testing of smartphones and IoT devices

    Get PDF
    Fuzz testing is an effective technique for finding software vulnerabilities. Fuzzing works by feeding quasi-random, auto-generated input sequences to a target program and searching for failures. When used to test physical devices, fuzzing is found to occasionally brick the devices, leading to significant testing expenses. Also, while existing kernel fuzzing is effective in finding kernel-interface vulnerabilities, it is not as efficient in finding deeply-hidden vulnerabilities. This disclosure presents an architecture for continuously running fuzz tests at scale on physical devices, including on kernel and hardware abstraction layer (HAL) modules. Multiple fuzzers run parallel tests and collaborate in a decentralized manner. Fuzzers share control flow paths and corresponding code coverages as they are discovered. Fuzzers share syscall sequences that brick devices as they are discovered, and arrive at an efficient set of sequences that maximize test coverage

    High-Throughput Screening of Acyl-CoA Thioesterase I Mutants Using a Fluid Array Platform

    Get PDF
    Screening target microorganisms from a mutated recombinant library plays a crucial role in advancing synthetic biology and metabolic engineering. However, conventional screening tools have several limitations regarding throughput, cost, and labor. Here, we used the fluid array platform to conduct high-throughput screening (HTS) that identified Escherichia coli ???TesA thioesterase mutants producing elevated yields of free fatty acids (FFAs) from a large (106) mutant library. A growth-based screening method using a TetA-RFP fusion sensing mechanism and a reporter-based screening method using high-level FFA producing mutants were employed to identify these mutants via HTS. The platform was able to cover >95% of the mutation library, and it screened target cells from many arrays of the fluid array platform so that a post-analysis could be conducted by gas chromatography. The ???TesA mutation of each isolated mutant showing improved FFA production in E. coli was characterized, and its enhanced FFA production capability was confirmed

    韓国における教師を中心とした学校改革に関する研究 : 1990年代後半以降の韓国社会における学校像の模索過程に注目して

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 秋田 喜代美, 東京大学准教授 浅井 幸子, 東京大学教授 恒吉 僚子, 東京大学准教授 李 正連, 東京大学教授 勝野 正章, 学習院大学教授 佐藤 学University of Tokyo(東京大学

    Combined Effects of Surface Morphology and Mechanical Straining Magnitudes on the Differentiation of Mesenchymal Stem Cells without Using Biochemical Reagents

    Get PDF
    Existing studies examining the control of mesenchymal stem cell (MSC) differentiation into desired cell types have used a variety of biochemical reagents such as growth factors despite possible side effects. Recently, the roles of biomimetic microphysical environments have drawn much attention in this field. We studied MSC differentiation and changes in gene expression in relation to osteoblast-like cell and smooth muscle-like cell type resulting from various microphysical environments, including differing magnitudes of tensile strain and substrate geometries for 8 days. In addition, we also investigated the residual effects of those selected microphysical environment factors on the differentiation by ceasing those factors for 3 days. The results of this study showed the effects of the strain magnitudes and surface geometries. However, the genes which are related to the same cell type showed different responses depending on the changes in strain magnitude and surface geometry. Also, different responses were observed three days after the straining was stopped. These data confirm that controlling microenvironments so that they mimic those in vivo contributes to the differentiation of MSCs into specific cell types. And duration of straining engagement was also found to play important roles along with surface geometry

    Visfatin exerts angiogenic effects on human umbilical vein endothelial cells through the mTOR signaling pathway

    Get PDF
    AbstractThe biologically active factors known as adipocytokines are secreted primarily by adipose tissues and can act as modulators of angiogenesis. Visfatin, an adipocytokine that has recently been reported to have angiogenic properties, is upregulated in diabetes, cancer, and inflammatory diseases. Because maintenance of an angiogenic balance is critically important in the management of these diseases, understanding the molecular mechanism by which visfatin promotes angiogenesis is very important. In this report, we describe our findings demonstrating that visfatin stimulates the mammalian target of the rapamycin (mTOR) pathway, which plays important roles in angiogenesis. Visfatin induced the expression of hypoxia-inducible factor 1α (HIF1α) and vascular endothelial growth factor (VEGF) in human endothelial cells. Inhibition of the mTOR pathway by rapamycin eliminated the angiogenic and proliferative effects of visfatin. The visfatin-induced increase in VEGF expression was also eliminated by RNA interference-mediated knockdown of the 70-kDa ribosomal protein S6 kinase (p70S6K), a downstream target of mTOR. Visfatin inactivated glycogen synthase kinase 3β (GSK3β) by phosphorylating it at Ser-9, leading to the nuclear translocation of β-catenin. Both rapamycin co-treatment and p70S6K knockdown inhibited visfatin-induced GSK3β phosphorylation at Ser-9 and nuclear translocation of β-catenin. Taken together, these results indicate that mTOR signaling is involved in visfatin-induced angiogenesis, and that this signaling leads to visfatin-induced VEGF expression and nuclear translocation of β-catenin

    Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux

    Get PDF
    The superb thermal conduction property of graphene establishes graphene as an excellent material for thermal management. In this paper, we selected graphene/graphene oxide nanosheets as the additives in nanofluids. The authors interestingly found that the highly enhanced critical heat flux (CHF) in the nanofluids containing graphene/graphene-oxide nanosheets (GON) cannot be explained by both the improved surface wettability and the capillarity of the nanoparticles deposition layer. Here we highlights that the GON nanofluid can be exploited to maximize the CHF the most efficiently by building up a characteristically ordered porous surface structure due to its own self-assembly characteristic resulting in a geometrically changed critical instability wavelength.open363

    Ninjurin1 positively regulates osteoclast development by enhancing the survival of prefusion osteoclasts

    Get PDF
    Osteoclasts (OCs) are bone-resorbing cells that originate from hematopoietic stem cells and develop through the fusion of mononuclear myeloid precursors. Dysregulation of OC development causes bone disorders such as osteopetrosis, osteoporosis, and rheumatoid arthritis. Although the molecular mechanisms underlying osteoclastogenesis have been well established, the means by which OCs maintain their survival during OC development remain unknown. We found that Ninjurin1 (Ninj1) expression is dynamically regulated during osteoclastogenesis and that Ninj1(-/-) mice exhibit increased trabecular bone volume owing to impaired OC development. Ninj1 deficiency did not alter OC differentiation, transmigration, fusion, or actin ring formation but increased Caspase-9-dependent intrinsic apoptosis in prefusion OCs (preOCs). Overexpression of Ninj1 enhanced the survival of mouse macrophage/preOC RAW264.7 cells in osteoclastogenic culture, suggesting that Ninj1 is important for the survival of preOCs. Finally, analysis of publicly available microarray data sets revealed a potent correlation between high NINJ1 expression and destructive bone disorders in humans. Our data indicate that Ninj1 plays an important role in bone homeostasis by enhancing the survival of preOCs

    CSF Otorrhea Resulting from Osteoradionecrosis of the Temporal Bone in a Patient with Recurrent Meningioma

    Get PDF
    Osteoradionecrosis of the temporal bone is a very rare but potentially lethal complication of radiotherapy for head and neck or skull base tumors. Only two cases of osteoradionecrosis of the temporal bone complicating cerebrospinal fluid (CSF) otorrhea have been reported in the literature. This report describes a case of CSF otorrhea and osteoradionecrosis of the temporal bone in a patient with meningioma who was treated with tympanomastoid surgery and autologous fat obliteration in the mastoid
    corecore