38 research outputs found
Low frequency radio properties of the z>5 quasar population
Optically luminous quasars at z > 5 are important probes of super-massive black hole (SMBH) formation. With new and future
radio facilities, the discovery of the brightest low-frequency radio sources in this epoch would be an important new probe of cosmic
reionization through 21-cm absorption experiments. In this work, we systematically study the low-frequency radio properties of a
sample of 115 known spectroscopically confirmed z > 5 quasars using the second data release of the Low Frequency Array (LOFAR)
Two Metre Sky survey (LoTSS-DR2), reaching noise levels of ∼80 µJy beam−1
(at 144 MHz) over an area of ∼ 5720 deg2
. We find
that 41 sources (36%) are detected in LoTSS-DR2 at > 2σ significance and we explore the evolution of their radio properties (power,
spectral index, and radio loudness) as a function of redshift and rest-frame ultra-violet properties. We obtain a median spectral index
of −0.29+0.10
−0.09 by stacking 93 quasars using LoTSS-DR2 and Faint Images of the Radio Sky at Twenty Centimetres (FIRST) data at
1.4 GHz, in line with observations of quasars at z < 3. We compare the radio loudness of the high-z quasar sample to a lower-z quasar
sample at z ∼ 2 and find that the two radio loudness distributions are consistent with no evolution, although the low number of high-z
quasars means that we cannot rule out weak evolution. Furthermore, we make a first order empirical estimate of the z = 6 quasar radio
luminosity function, which is used to derive the expected number of high-z sources that will be detected in the completed LoTSS
survey. This work highlights the fact that new deep radio observations can be a valuable tool in selecting high-z quasar candidates for
follow-up spectroscopic observations by decreasing contamination of stellar dwarfs and reducing possible selection biases introduced
by strict colour cuts
AMI-CL J0300+2613: A Galactic anomalous-microwave-emission ring masquerading as a galaxy cluster
The Arcminute Microkelvin Imager (AMI) carried out a blind survey for galaxy
clusters via their Sunyaev-Zel'dovich effect decrements between 2008 and 2011.
The first detection, known as AMI-CL J0300+2613, has been reobserved with AMI
equipped with a new digital correlator with high dynamic range. The combination
of the new AMI data and more recent high-resolution sub-mm and infra-red maps
now shows the feature in fact to be a ring of positive dust-correlated Galactic
emission, which is likely to be anomalous microwave emission (AME). If so, this
is the first completely blind detection of AME at arcminute scales
Cosmology from LOFAR Two-metre Sky Survey data release 2: angular clustering of radio sources
Covering ∼ 5600 deg2 to rms sensitivities of ∼70−100 μJy beam−1, the LOFAR Two-metre Sky Survey Data Release 2 (LoTSS-DR2) provides the largest low-frequency (∼150 MHz) radio catalogue to date, making it an excellent tool for large-area radio cosmology studies. In this work, we use LoTSS-DR2 sources to investigate the angular two-point correlation function of galaxies within the survey. We discuss systematics in the data and an improved methodology for generating random catalogues, compared to that used for LoTSS-DR1, before presenting the angular clustering for ∼900 000 sources ≥1.5 mJy and a peak signal-to-noise ≥ 7.5 across ∼80 per cent of the observed area. Using the clustering, we infer the bias assuming two evolutionary models. When fitting angular scales of 0.5 ≤ θ < 5◦, using a linear bias model, we find LoTSS-DR2 sources are biased tracers of the underlying matter, with a bias of bC = 2.14+0.22 −0.20 (assuming constant bias) and bE(z = 0) = 1.79+0.15 −0.14 (for an evolving model, inversely proportional to the growth factor), corresponding to bE = 2.81+0.24 −0.22 at the median redshift of our sample, assuming the LoTSS Deep Fields redshift distribution is representative of our data. This reduces to bC = 2.02+0.17 −0.16 and bE(z = 0) = 1.67+0.12 −0.12 when allowing preferential redshift distributions from the Deep Fields to model our data. Whilst the clustering amplitude is slightly lower than LoTSS-DR1 (≥2 mJy), our study benefits from larger samples and improved redshift estimates
Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy
Next-generation radio surveys are about to transform radio astronomy by
discovering and studying tens of millions of previously unknown radio sources.
These surveys will provide new insights to understand the evolution of
galaxies, measuring the evolution of the cosmic star formation rate, and
rivalling traditional techniques in the measurement of fundamental cosmological
parameters. By observing a new volume of observational parameter space, they
are also likely to discover unexpected new phenomena. This review traces the
evolution of extragalactic radio continuum surveys from the earliest days of
radio astronomy to the present, and identifies the challenges that must be
overcome to achieve this transformational change.Comment: To be published in Nature Astronomy 18 Sept 201
The LOFAR Two-metre Sky Survey V. Second data release
In this data release from the ongoing LOw-Frequency ARray (LOFAR) Two-metre Sky Survey we present 120a 168 MHz images covering 27% of the northern sky. Our coverage is split into two regions centred at approximately 12h45m +44 30a and 1h00m +28 00a and spanning 4178 and 1457 square degrees respectively. The images were derived from 3451 h (7.6 PB) of LOFAR High Band Antenna data which were corrected for the direction-independent instrumental properties as well as direction-dependent ionospheric distortions during extensive, but fully automated, data processing. A catalogue of 4 396 228 radio sources is derived from our total intensity (Stokes I) maps, where the majority of these have never been detected at radio wavelengths before. At 6a resolution, our full bandwidth Stokes I continuum maps with a central frequency of 144 MHz have: a median rms sensitivity of 83 μJy beama 1; a flux density scale accuracy of approximately 10%; an astrometric accuracy of 0.2a; and we estimate the point-source completeness to be 90% at a peak brightness of 0.8 mJy beama 1. By creating three 16 MHz bandwidth images across the band we are able to measure the in-band spectral index of many sources, albeit with an error on the derived spectral index of > a ±a 0.2 which is a consequence of our flux-density scale accuracy and small fractional bandwidth. Our circular polarisation (Stokes V) 20a resolution 120a168 MHz continuum images have a median rms sensitivity of 95 μJy beama 1, and we estimate a Stokes I to Stokes V leakage of 0.056%. Our linear polarisation (Stokes Q and Stokes U) image cubes consist of 480a A a 97.6 kHz wide planes and have a median rms sensitivity per plane of 10.8 mJy beama 1 at 4a and 2.2 mJy beama 1 at 20a; we estimate the Stokes I to Stokes Q/U leakage to be approximately 0.2%. Here we characterise and publicly release our Stokes I, Q, U and V images in addition to the calibrated uv-data to facilitate the thorough scientific exploitation of this unique dataset
LOFAR 144-MHz follow-up observations of GW170817
ABSTRACT
We present low-radio-frequency follow-up observations of AT 2017gfo, the electromagnetic counterpart of GW170817, which was the first binary neutron star merger to be detected by Advanced LIGO–Virgo. These data, with a central frequency of 144 MHz, were obtained with LOFAR, the Low-Frequency Array. The maximum elevation of the target is just 137 when observed with LOFAR, making our observations particularly challenging to calibrate and significantly limiting the achievable sensitivity. On time-scales of 130–138 and 371–374 d after the merger event, we obtain 3σ upper limits for the afterglow component of 6.6 and 19.5 mJy beam−1, respectively. Using our best upper limit and previously published, contemporaneous higher frequency radio data, we place a limit on any potential steepening of the radio spectrum between 610 and 144 MHz: the two-point spectral index  −2.5. We also show that LOFAR can detect the afterglows of future binary neutron star merger events occurring at more favourable elevations.</jats:p
Planck 2015 results I. Overview of products and scientific results
The European Space Agency's Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based on data from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds
The LOFAR Two-metre Sky Survey. I. Survey description and preliminary data release
The LOFAR Two-metre Sky Survey (LoTSS) is a deep 120–168 MHz imaging survey that will eventually cover the entire northern sky. Each of the 3170 pointings will be observed for 8 h, which, at most declinations, is sufficient to produce ~5″ resolution images with a sensitivity of ~100 μJy/beam and accomplish the main scientific aims of the survey, which are to explore the formation and evolution of massive black holes, galaxies, clusters of galaxies and large-scale structure. Owing to the compact core and long baselines of LOFAR, the images provide excellent sensitivity to both highly extended and compact emission. For legacy value, the data are archived at high spectral and time resolution to facilitate subarcsecond imaging and spectral line studies. In this paper we provide an overview of the LoTSS. We outline the survey strategy, the observational status, the current calibration techniques, a preliminary data release, and the anticipated scientific impact. The preliminary images that we have released were created using a fully automated but direction-independent calibration strategy and are significantly more sensitive than those produced by any existing large-area low-frequency survey. In excess of 44 000 sources are detected in the images that have a resolution of 25″, typical noise levels of less than 0.5 mJy/beam, and cover an area of over 350 square degrees in the region of the HETDEX Spring Field (right ascension 10h45m00s to 15h30m00s and declination 45°00′00″ to 57°00′00″)
The LOFAR Two-metre Sky Survey III. First data release: Optical/infrared identifications and value-added catalogue
The LOFAR Two-metre Sky Survey (LoTSS) is an ongoing sensitive, high-resolution 120–168 MHz survey of the northern sky with diverse and ambitious science goals. Many of the scientific objectives of LoTSS rely upon, or are enhanced by, the association or separation of the sometimes incorrectly catalogued radio components into distinct radio sources and the identification and characterisation of the optical counterparts to these sources. We present the source associations and optical and/or IR identifications for sources in the first data release, which are made using a combination of statistical techniques and visual association and identification. We document in detail the colour- and magnitude-dependent likelihood ratio method used for statistical identification as well as the Zooniverse project, called LOFAR Galaxy Zoo, used for visual classification. We describe the process used to select which of these two different methods is most appropriate for each LoTSS source. The final LoTSS-DR1-IDs value-added catalogue presented contains 318 520 radio sources, of which 231 716 (73%) have optical and/or IR identifications in Pan-STARRS and WISE