577 research outputs found

    Does the 8N8-N bonding rule break down in As2_2Se3_3 glass?

    Full text link
    The local coordination numbers of As2_2Se3_3 glass were determined by a combination of anomalous x-ray scattering experiments, reverse Monte Carlo calculations, and {\it ab initio} molecular dynamics simulations. The well-known `8-NN bonding rule' proposed by Mott breaks down around the As atoms, exceeding the rule by 7--26%. An experimental prediction based on mean-field theory agrees with the present experimental and theoretical results. The fourfold coordinated As atoms likely form As-As wrong bond chains rather than ethan-like configurations, which is identified as the origin for the breakdown of the `8-NN bonding rule'.Comment: 6 pages, 6figures, 1table, submitted to Europhysics Letter

    Frequency and Phase Synchronization in Neuromagnetic Cortical Responses to Flickering-Color Stimuli

    Full text link
    In our earlier study dealing with the analysis of neuromagnetic responses (magnetoencephalograms - MEG) to flickering-color stimuli for a group of control human subjects (9 volunteers) and a patient with photosensitive epilepsy (a 12-year old girl), it was shown that Flicker-Noise Spectroscopy (FNS) was able to identify specific differences in the responses of each organism. The high specificity of individual MEG responses manifested itself in the values of FNS parameters for both chaotic and resonant components of the original signal. The present study applies the FNS cross-correlation function to the analysis of correlations between the MEG responses simultaneously measured at spatially separated points of the human cortex processing the red-blue flickering color stimulus. It is shown that the cross-correlations for control (healthy) subjects are characterized by frequency and phase synchronization at different points of the cortex, with the dynamics of neuromagnetic responses being determined by the low-frequency processes that correspond to normal physiological rhythms. But for the patient, the frequency and phase synchronization breaks down, which is associated with the suppression of cortical regulatory functions when the flickering-color stimulus is applied, and higher frequencies start playing the dominating role. This suggests that the disruption of correlations in the MEG responses is the indicator of pathological changes leading to photosensitive epilepsy, which can be used for developing a method of diagnosing the disease based on the analysis with the FNS cross-correlation function.Comment: 21 pages, 14 figures; submitted to "Laser Physics", 2010, 2

    Thermo-mechanic-electrical coupling in phospholipid monolayers near the critical point

    Full text link
    Lipid monolayers have been shown to represent a powerful tool in studying mechanical and thermodynamic properties of lipid membranes as well as their interaction with proteins. Using Einstein's theory of fluctuations we here demonstrate, that an experimentally derived linear relationship both between transition entropy S and area A as well as between transition entropy and charge q implies a linear relationships between compressibility \kappa_T, heat capacity c_\pi, thermal expansion coefficient \alpha_T and electric capacity CT. We demonstrate that these couplings have strong predictive power as they allow calculating electrical and thermal properties from mechanical measurements. The precision of the prediction increases as the critical point TC is approached

    Jets in coronal holes: Hinode observations and 3D computer modelling

    Full text link
    Recent observations of coronal hole areas with the XRT and EIS instruments onboard the Hinode satellite have shown with unprecedented detail the launching of fast, hot jets away from the solar surface. In some cases these events coincide with episodes of flux emergence from beneath the photosphere. In this letter we show results of a 3D numerical experiment of flux emergence from the solar interior into a coronal hole and compare them with simultaneous XRT and EIS observations of a jet-launching event that accompanied the appearance of a bipolar region in MDI magnetograms. The magnetic skeleton and topology that result in the experiment bear a strong resemblance to linear force-fee extrapolations of the SOHO/MDI magnetograms. A thin current sheet is formed at the boundary of the emerging plasma. A jet is launched upward along the open reconnected field lines with values of temperature, density and velocity in agreement with the XRT and EIS observations. Below the jet, a split-vault structure results with two chambers: a shrinking one containing the emerged field loops and a growing one with loops produced by the reconnection. The ongoing reconnection leads to a horizontal drift of the vault-and-jet structure. The timescales, velocities, and other plasma properties in the experiment are consistent with recent statistical studies of this type of events made with Hinode data.Comment: 10 pages, 4 figures. Revised version submitted to ApJ Letter

    A three-dimensional study of reconnection, current sheets and jets resulting from magnetic flux emergence in the Sun

    Full text link
    We present the results of a set of three-dimensional numerical simulations of magnetic flux emergence from below the photosphere into the corona that include a uniform and horizontal coronal magnetic field mimicking a pre-existing large-scale coronal magnetic system. Cases with different relative orientations of the upcoming and coronal fields are studied. Upon contact, a concentrated current sheet with the shape of an arch or bridge is formed at the interface which marks the positions of maximum jump in the field vector between the two systems. Relative angles above 90 degrees yield abundant magnetic reconnection and plasma heating. The reconnection is seen to be intrisincally three-dimensional in nature, except at singular positions along the current sheet. It drives collimated high-speed and high-temperature outflows only a short distance from the reconnection site that propagate along the ambient magnetic field lines as jets. Due to the low plasma density in the corona, these jets may propagate over large distances and, therefore help distribute high-density and high-temperature plasma along these newly reconnected field lines. The experiments permit to discern and visualize the three-dimensional shape and relative position of the upcoming plasma hill, high-speed jets and subphotospheric flux system. As a result of the reconnection, magnetic field lines from the magnetized plasma below the surface end up as coronal field lines, thus causing a profound change in the connectivity of the magnetic regions in the corona. The experiments presented here thus yield a number of features repeatedly observed with the TRACE satellite and the YOHKOH-SXT detector, like the establishment of connectivity between emergent and pre-existing active regions, local heating and high-velocity outflows.Comment: 13 pages, 7 figures, inpress ApJ

    Ionic Conductivities of Molten CuI and AgI-CuI Mixtures

    Full text link
    Ionic conductivities σ for molten CuI and AgI-CuI mixtures were measured in the temperature ranges of approximately 580-800 and 500-850 °C, respectively. The value of σ for molten CuI in the range is smaller than that for molten CuBr and CuCl. σ for molten AgI-CuI mixtures decreases with increasing CuI-concentration. The activation energies Ea for molten AgI-CuI system were determined from the analysis of temperature dependence of σ by using the by Arrhenius type equation. Ea for molten AgI-CuI gradually increase with increasing CuIconcentration

    Dynamical properties of liquid Al near melting. An orbital-free molecular dynamics study

    Get PDF
    The static and dynamic structure of liquid Al is studied using the orbital free ab-initio molecular dynamics method. Two thermodynamic states along the coexistence line are considered, namely T = 943 K and 1323 K for which X-ray and neutron scattering data are available. A new kinetic energy functional, which fulfills a number of physically relevant conditions is employed, along with a local first principles pseudopotential. In addition to a comparison with experiment, we also compare our ab-initio results with those obtained from conventional molecular dynamics simulations using effective interionic pair potentials derived from second order pseudopotential perturbation theory.Comment: 15 pages, 12 figures, 2 tables, submitted to PR

    Pressure dependence of the static structure of liquid GeTe based on ab initio

    Full text link
    We have investigated the pressure dependence of the static structure of liquid GeTe based on ab initio molecular dynamics simulations. The pressure range is between ambient pressure and 250 GPa, and their temperatures between 1000 K and 4000 K, which keep the liquid state. In this study, we found two transition stages caused by the compression. At the first stage, below 12 GPa, atomic distances elongate and Peierls-type distortion is dissolved with increasing pressure. At the second stage, above 12 GPa, atomic distances shorten and the electronic states shows metallic
    corecore