577 research outputs found
Does the bonding rule break down in AsSe glass?
The local coordination numbers of AsSe glass were determined by a
combination of anomalous x-ray scattering experiments, reverse Monte Carlo
calculations, and {\it ab initio} molecular dynamics simulations. The
well-known `8- bonding rule' proposed by Mott breaks down around the As
atoms, exceeding the rule by 7--26%. An experimental prediction based on
mean-field theory agrees with the present experimental and theoretical results.
The fourfold coordinated As atoms likely form As-As wrong bond chains rather
than ethan-like configurations, which is identified as the origin for the
breakdown of the `8- bonding rule'.Comment: 6 pages, 6figures, 1table, submitted to Europhysics Letter
Frequency and Phase Synchronization in Neuromagnetic Cortical Responses to Flickering-Color Stimuli
In our earlier study dealing with the analysis of neuromagnetic responses
(magnetoencephalograms - MEG) to flickering-color stimuli for a group of
control human subjects (9 volunteers) and a patient with photosensitive
epilepsy (a 12-year old girl), it was shown that Flicker-Noise Spectroscopy
(FNS) was able to identify specific differences in the responses of each
organism. The high specificity of individual MEG responses manifested itself in
the values of FNS parameters for both chaotic and resonant components of the
original signal. The present study applies the FNS cross-correlation function
to the analysis of correlations between the MEG responses simultaneously
measured at spatially separated points of the human cortex processing the
red-blue flickering color stimulus. It is shown that the cross-correlations for
control (healthy) subjects are characterized by frequency and phase
synchronization at different points of the cortex, with the dynamics of
neuromagnetic responses being determined by the low-frequency processes that
correspond to normal physiological rhythms. But for the patient, the frequency
and phase synchronization breaks down, which is associated with the suppression
of cortical regulatory functions when the flickering-color stimulus is applied,
and higher frequencies start playing the dominating role. This suggests that
the disruption of correlations in the MEG responses is the indicator of
pathological changes leading to photosensitive epilepsy, which can be used for
developing a method of diagnosing the disease based on the analysis with the
FNS cross-correlation function.Comment: 21 pages, 14 figures; submitted to "Laser Physics", 2010, 2
Thermo-mechanic-electrical coupling in phospholipid monolayers near the critical point
Lipid monolayers have been shown to represent a powerful tool in studying
mechanical and thermodynamic properties of lipid membranes as well as their
interaction with proteins. Using Einstein's theory of fluctuations we here
demonstrate, that an experimentally derived linear relationship both between
transition entropy S and area A as well as between transition entropy and
charge q implies a linear relationships between compressibility \kappa_T, heat
capacity c_\pi, thermal expansion coefficient \alpha_T and electric capacity
CT. We demonstrate that these couplings have strong predictive power as they
allow calculating electrical and thermal properties from mechanical
measurements. The precision of the prediction increases as the critical point
TC is approached
Jets in coronal holes: Hinode observations and 3D computer modelling
Recent observations of coronal hole areas with the XRT and EIS instruments
onboard the Hinode satellite have shown with unprecedented detail the launching
of fast, hot jets away from the solar surface. In some cases these events
coincide with episodes of flux emergence from beneath the photosphere. In this
letter we show results of a 3D numerical experiment of flux emergence from the
solar interior into a coronal hole and compare them with simultaneous XRT and
EIS observations of a jet-launching event that accompanied the appearance of a
bipolar region in MDI magnetograms. The magnetic skeleton and topology that
result in the experiment bear a strong resemblance to linear force-fee
extrapolations of the SOHO/MDI magnetograms. A thin current sheet is formed at
the boundary of the emerging plasma. A jet is launched upward along the open
reconnected field lines with values of temperature, density and velocity in
agreement with the XRT and EIS observations. Below the jet, a split-vault
structure results with two chambers: a shrinking one containing the emerged
field loops and a growing one with loops produced by the reconnection. The
ongoing reconnection leads to a horizontal drift of the vault-and-jet
structure. The timescales, velocities, and other plasma properties in the
experiment are consistent with recent statistical studies of this type of
events made with Hinode data.Comment: 10 pages, 4 figures. Revised version submitted to ApJ Letter
A three-dimensional study of reconnection, current sheets and jets resulting from magnetic flux emergence in the Sun
We present the results of a set of three-dimensional numerical simulations of
magnetic flux emergence from below the photosphere into the corona that include
a uniform and horizontal coronal magnetic field mimicking a pre-existing
large-scale coronal magnetic system. Cases with different relative orientations
of the upcoming and coronal fields are studied. Upon contact, a concentrated
current sheet with the shape of an arch or bridge is formed at the interface
which marks the positions of maximum jump in the field vector between the two
systems. Relative angles above 90 degrees yield abundant magnetic reconnection
and plasma heating. The reconnection is seen to be intrisincally
three-dimensional in nature, except at singular positions along the current
sheet. It drives collimated high-speed and high-temperature outflows only a
short distance from the reconnection site that propagate along the ambient
magnetic field lines as jets. Due to the low plasma density in the corona,
these jets may propagate over large distances and, therefore help distribute
high-density and high-temperature plasma along these newly reconnected field
lines. The experiments permit to discern and visualize the three-dimensional
shape and relative position of the upcoming plasma hill, high-speed jets and
subphotospheric flux system. As a result of the reconnection, magnetic field
lines from the magnetized plasma below the surface end up as coronal field
lines, thus causing a profound change in the connectivity of the magnetic
regions in the corona. The experiments presented here thus yield a number of
features repeatedly observed with the TRACE satellite and the YOHKOH-SXT
detector, like the establishment of connectivity between emergent and
pre-existing active regions, local heating and high-velocity outflows.Comment: 13 pages, 7 figures, inpress ApJ
Ionic Conductivities of Molten CuI and AgI-CuI Mixtures
Ionic conductivities σ for molten CuI and AgI-CuI mixtures were measured in the temperature ranges of approximately 580-800 and 500-850 °C, respectively. The value of σ for molten CuI in the range is smaller than that for molten CuBr and CuCl. σ for molten AgI-CuI mixtures decreases with increasing CuI-concentration. The activation energies Ea for molten AgI-CuI system were determined from the analysis of temperature dependence of σ by using the by Arrhenius type equation. Ea for molten AgI-CuI gradually increase with increasing CuIconcentration
Dynamical properties of liquid Al near melting. An orbital-free molecular dynamics study
The static and dynamic structure of liquid Al is studied using the orbital
free ab-initio molecular dynamics method. Two thermodynamic states along the
coexistence line are considered, namely T = 943 K and 1323 K for which X-ray
and neutron scattering data are available. A new kinetic energy functional,
which fulfills a number of physically relevant conditions is employed, along
with a local first principles pseudopotential. In addition to a comparison with
experiment, we also compare our ab-initio results with those obtained from
conventional molecular dynamics simulations using effective interionic pair
potentials derived from second order pseudopotential perturbation theory.Comment: 15 pages, 12 figures, 2 tables, submitted to PR
Pressure dependence of the static structure of liquid GeTe based on ab initio
We have investigated the pressure dependence of the static structure of liquid GeTe based on ab initio molecular dynamics simulations. The pressure range is between ambient pressure and 250 GPa, and their temperatures between 1000 K and 4000 K, which keep the liquid state. In this study, we found two transition stages caused by the compression. At the first stage, below 12 GPa, atomic distances elongate and Peierls-type distortion is dissolved with increasing pressure. At the second stage, above 12 GPa, atomic distances shorten and the electronic states shows metallic
- …