1,185 research outputs found

    Feedback control architecture and the bacterial chemotaxis network.

    Get PDF
    PMCID: PMC3088647This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt) the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance

    HIV Types, Groups, Subtypes and Recombinant Forms: Errors in Replication, Selection Pressure and Quasispecies

    Get PDF
    HIV-1 is a chimpanzee virus which was transmitted to humans by several zoonotic events resulting in infection with HIV-1 groups M P, and in parallel transmission events from sooty mangabey monkey viruses leading to infections with HIV-2 groups A H. Both viruses have circulated in the human population for about 80 years. In the infected patient, HIV mutates, and by elimination of some of the viruses by the action of the immune system individual quasispecies are formed. Along with the selection of the fittest viruses, mutation and recombination after superinfection with HIV from different groups or subtypes have resulted in the diversity of their patterns of geographic distribution. Despite the high variability observed, some essential parts of the HIV genome are highly conserved. Viral diversity is further facilitated in some parts of the HIV genome by drug selection pressure and may also be enhanced by different genetic factors, including HLA in patients from different regions of the world. Viral and human genetic factors influence pathogenesis. Viral genetic factors are proteins such as Tat, Vif and Rev. Human genetic factors associated with a better clinical outcome are proteins such as APOBEC, langerin, tetherin and chemokine receptor 5 (CCR5) and HLA B27, B57, DRB1{*}1303, KIR and PARD3B. Copyright (C) 2012 S. Karger AG, Base

    Comparison of T-Cell Interferon-Ξ³ Release Assays for Mycobacterium tuberculosis-Specific Antigens in Patients with Active and Latent Tuberculosis

    Get PDF
    Through the use of QuantiFERON-TB Gold, a commercial IFN-Ξ³ assay, we compared differences in quantitative T-cell responses to Mycobacterium tuberculosis (MTB)-specific antigens [QuantiFERON TB-2G (QFT-2G)] between patients with active tuberculosis (TB) disease and those with latent TB infection (LTBI). The patient group consisted of 180 patients with active TB disease (culture-positive for MTB) and 50 screening contacts with LTBI-positive response to the QFT-2G test. We prospectively performed a tuberculin skin test (TST) and a QFT-2G test for all subjects. The median IFN-Ξ³ levels upon the application of both antigens, ESAT-6 and CFP-10, were significantly higher in patients with active TB disease than in those with LTBI. A combined positive response to both antigens occurred at a higher rate in patients with active TB disease than in those with LTBI. There were no significant relationships between the quantitative responses of IFN-Ξ³ to both antigens and the maximum induration on TST in both patient groups. We demonstrated significant differences in the quantitative responses of IFN-Ξ³ to MTB between patients with active TB disease and those with LTBI in this study. However, there was an overlap in the IFN-Ξ³ levels between active TB disease and LTBI groups. Therefore, it would be difficult to use the QFT-2G test to completely discriminate active TB disease from LTBI

    Genetic variants in mannose receptor gene (MRC1) confer susceptibility to increased risk of sarcoidosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mannose receptor (MR) is a member of the C-type lectin receptor family involved in pathogen molecular-pattern recognition and thought to be critical in shaping host immune response. The aim of this study was to investigate potential associations of genetic variants in the <it>MRC1 </it>gene with sarcoidosis.</p> <p>Methods</p> <p>Nine single nucleotide polymorphisms (SNPs), encompassing the <it>MRC1 </it>gene, were genotyped in a total of 605 Japanese consisting of 181 sarcoidosis patients and 424 healthy controls.</p> <p>Results</p> <p>Suggestive evidence of association between rs691005 SNP and risk of sarcoidosis was observed independent of sex and age in a recessive model (<it>P </it>= 0.001).</p> <p>Conclusions</p> <p>These results suggest that <it>MRC1 </it>is an important candidate gene for sarcoidosis. This is the first study to imply that genetic variants in <it>MRC1</it>, a major member of the C-type lectin, contribute to the development of sarcoidosis.</p

    Concordance and Discordance Between Brain Perfusion and Atrophy in Frontotemporal Dementia

    Get PDF
    The aim of this study was to determine if a dissociation between reduced cerebral perfusion and gray matter (GM) atrophy exists in frontotemporal dementia (FTD). The study included 28 patients with FTD and 29 cognitive normal (CN) subjects. All subjects had MRI at 1.5Β T, including T1-weighted structural and arterial spin labeling (ASL) perfusion imaging. Non-parametric concordance/discordance tests revealed that GM atrophy without hypoperfusion occurs in the premotor cortex in FTD whereas concordant GM atrophy and hypoperfusion changes are found in the right prefrontal cortex and bilateral medial frontal lobe. The results suggest that damage of brain function in FTD, assessed by ASL perfusion, can vary regionally despite widespread atrophy. Detection of discordance between brain perfusion and structure in FTD might aid diagnosis and staging of the disease

    Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking

    Get PDF
    In this work we discuss how to use photophysical information for improved quantitative measurements using Photo Activated Localization Microscopy (PALM) imaging. We introduce a method that reliably estimates the number of photoblinking molecules present in a biological sample and gives a robust way to quantify proteins at the single-cell level from PALM images. We apply this method to determine the amount of Ξ²2 adrenergic receptor, a prototypical G Protein Coupled Receptor, expressed on the plasma membrane of HeLa cells

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (Ξ£ETPb) summed over 3.1<Ξ·<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) β€œnear-side” (Ξ”Ο•βˆΌ0) correlation that grows rapidly with increasing Ξ£ETPb. A long-range β€œaway-side” (Ξ”Ο•βˆΌΟ€) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small Ξ£ETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and Ξ£ETPb dependence. The resultant Δϕ correlation is approximately symmetric about Ο€/2, and is consistent with a dominant cos⁑2Δϕ modulation for all Ξ£ETPb ranges and particle pT

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration

    Structural Modeling and DNA Binding Autoinhibition Analysis of Ergp55, a Critical Transcription Factor in Prostate Cancer

    Get PDF
    BACKGROUND: The Ergp55 protein belongs to Ets family of transcription factor. The Ets proteins are highly conserved in their DNA binding domain and involved in various development processes and regulation of cancer metabolism. To study the structure and DNA binding autoinhibition mechanism of Ergp55 protein, we have produced full length and smaller polypeptides of Ergp55 protein in E. coli and characterized using various biophysical techniques. RESULTS: The Ergp55 polypeptides contain large amount of Ξ±-helix and random coil structures as measured by circular dichorism spectroscopy. The full length Ergp55 forms a flexible and elongated molecule as revealed by molecular modeling, dynamics simulation and structural prediction algorithms. The binding analyses of Ergp55 polypeptides with target DNA sequences of E74 and cfos promoters indicate that longer fragments of Ergp55 (beyond the Ets domain) showed the evidence of auto-inhibition. This study also revealed the parts of Ergp55 protein that mediate auto-inhibition. SIGNIFICANCE: The current study will aid in designing the compounds that stabilize the inhibited form of Ergp55 and inhibit its binding to promoter DNA. It will contribute in the development of drugs targeting Ergp55 for the prostate cancer treatment
    • …
    corecore