23 research outputs found

    Promoter Polymorphism of RGS2 Gene Is Associated with Change of Blood Pressure in Subjects with Antihypertensive Treatment: The Azelnidipine and Temocapril in Hypertensive Patients with Type 2 Diabetes Study

    Get PDF
    We performed a prospective study to examine the genetic effect on the response to a calcium (Ca) channel blocker, azelnidipine and an ACE inhibitor, temocapril treatment in patients with hypertension, as a part of the prior clinical trial, the Azelnidipine and Temocapril in Hypertensive Patients with Type 2 Diabetes Study (ATTEST). Methods and Results. All subjects who gave informed consent for genetic research were divided into two groups: the subjects treated with azelnidipine or temocapril, for 52 weeks. We selected 18 susceptible genes for hypertension and determined their genotypes using TaqMan PCR method. RNA samples were extracted from peripheral blood, and quantitative real time PCR for all genes was performed using TaqMan method. One of the polymorphisms of the RGS2 gene was extracted as being able to influence the effect of these treatments to reduce BP. At eight weeks, BP change showed a significant interaction between the A-638G polymorphism of Regulator of G protein signaling-2 (RGS2) gene and treatment with azelnidipine or temocapril. There was no gene whose expression was associated with BP phenotypes or the polymorphisms of each gene. Conclusions. A-638G polymorphism of the RGS-2 gene could be a predictive factor for therapeutic performance of Ca channel blockers

    Oscillations and accelerations of ice crystal growth rates in microgravity in presence of antifreeze glycoprotein impurity in supercooled water

    Get PDF
    The free growth of ice crystals in supercooled bulk water containing an impurity of glycoprotein, a bio-macromolecule that functions as 'antifreeze' in living organisms in a subzero environment, was observed under microgravity conditions on the International Space Station. We observed the acceleration and oscillation of the normal growth rates as a result of the interfacial adsorption of these protein molecules, which is a newly discovered impurity effect for crystal growth. As the convection caused by gravity may mitigate or modify this effect, secure observations of this effect were first made possible by continuous measurements of normal growth rates under long-term microgravity condition realized only in the spacecraft. Our findings will lead to a better understanding of a novel kinetic process for growth oscillation in relation to growth promotion due to the adsorption of protein molecules and will shed light on the role that crystal growth kinetics has in the onset of the mysterious antifreeze effect in living organisms, namely, how this protein may prevent fish freezing

    α‑1‑<i>C</i>‑Butyl-1,4-dideoxy-1,4-imino‑l‑arabinitol as a Second-Generation Iminosugar-Based Oral α‑Glucosidase Inhibitor for Improving Postprandial Hyperglycemia

    No full text
    We report on the synthesis and the biological evaluation of a series of α-1-<i>C</i>-alkylated 1,4-dideoxy-1,4-imino-l-arabinitol (LAB) derivatives. The asymmetric synthesis of the derivatives was achieved by asymmetric allylic alkylation, ring-closing metathesis, and Negishi cross-coupling as key reactions. α-1-<i>C</i>-Butyl-LAB is a potent inhibitor of intestinal maltase, isomaltase, and sucrase, with IC<sub>50</sub> values of 0.13, 4.7, and 0.032 μM, respectively. Matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis revealed that this compound differs from miglitol in that it does not influence oligosaccharide processing and the maturation of glycoproteins. A molecular docking study of maltase-glucoamylase suggested that the interaction modes and the orientations of α-1-<i>C</i>-butyl-LAB and miglitol are clearly different. Furthermore, α-1-<i>C</i>-butyl-LAB strongly suppressed postprandial hyperglycemia at an early phase, similar to miglitol in vivo. It is noteworthy that the effective dose was about 10-fold lower than that for miglitol. α-1-<i>C</i>-Butyl-LAB therefore represents a new class of promising compounds that can improve postprandial hyperglycemia
    corecore