1,785 research outputs found
Faithful qubit distribution assisted by one additional qubit against collective noise
We propose a distribution scheme of polarization states of a single photon
over collective-noise channel. By adding one extra photon with a fixed
polarization, we can protect the state against collective noise via a
parity-check measurement and post-selection. While the scheme succeeds only
probabilistically, it is simpler and more flexible than the schemes utilizing
decoherence-free subspace. An application to BB84 protocol through collective
noise channel, which is robust to the Trojan horse attack, is also given.Comment: 4 pages, 3 figures; published version in Phys. Rev. Let
Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking
We report the experimental demonstration of a transmission scheme of photonic
qubits over unstabilized optical fibers, which has the plug-and-play feature as
well as the ability to transmit any state of a qubit, regardless of whether it
is known, unknown, or entangled to other systems. A high fidelity to the
noiseless quantum channel was achieved by adding an ancilla photon after the
signal photon within the correlation time of the fiber noise and by performing
quantum parity checking. Simplicity, maintenance-free feature and robustness
against path-length mismatches among the nodes make our scheme suitable for
multi-user quantum communication networks.Comment: 8 pages, 4 figures; published in New J. Phys. and selected in IOP
Selec
Attenuation of ischemic liver injury by prostaglandin E<inf>1</inf> analogue, misoprostol, and prostaglandin I<inf>2</inf> analogue, OP-41483
Background: Prostaglandin has been reported to have protective effects against liver injury. Use of this agent in clinical settings, however, is limited because of drugrelated side effects. This study investigated whether misoprostol, prostaglandin E1 analogue, and OP-41483, prostaglandin I2 analogue, which have fewer adverse effects with a longer half-life, attenuate ischemic liver damage. Study Design: Thirty beagle dogs underwent 2 hours of hepatic vascular exclusion using venovenous bypass. Misoprostol was administered intravenously for 30 minutes before ischemia and for 3 hours after reperfusion. OP-41483 was administered intraportally for 30 minutes before ischemia (2 μg/kg/min) and for 3 hours after reperfusion (0.5 μg/kg/min). Animals were divided into five groups: untreated control group (n = 10); high-dose misoprostol (total 100 μg/kg) group (MP-H, n = 5); middle-dose misoprostol (50 μg/kg) group (MP-M, n = 5); low-dose misoprostol (25 μg/kg) group (MP-L, n = 5); and OP-41483 group (OP, n = 5). Animal survival, hepatic tissue blood flow (HTBF), liver function, and histology were analyzed. Results: Two-week animal survival rates were 30% in control, 60% in MP-H, 100% in MP-M, 80% in MP-L, and 100% in OP. The treatments with prostaglandin analogues improved HTBF, and attenuated liver enzyme release, adenine nucleotrides degradation, and histologic abnormalities. In contrast to the MP-H animals that exhibited unstable cardiovascular systems, the MP- M, MP-L, and OP animals experienced only transient hypotension. Conclusions: These results indicate that misoprostol and OP-41483 prevent ischemic liver damage, although careful dose adjustment of misoprostol is required to obtain the best protection with minimal side effects
Shallow and diffuse spin-orbit potential for proton elastic scattering from neutron-rich helium isotopes at 71 MeV/nucleon
Vector analyzing powers for proton elastic scattering from 8He at 71
MeV/nucleon have been measured using a solid polarized proton target operated
in a low magnetic field of 0.1 T. The spin-orbit potential obtained from a
phenomenological optical model analysis is found to be significantly shallower
and more diffuse than the global systematics of stable nuclei, which is an
indication that the spin-orbit potential is modified for scattering involving
neutron-rich nuclei. A close similarity between the matter radius and the
root-mean-square radius of the spin-orbit potential is also identified.Comment: 6 pages, 4 figures, accepted for publication in Physical Review C
Rapid Communicatio
Attenuation of ischemic liver injury by monoclonal anti-endothelin antibody, awETN40
Background: Enhanced production of endothelin-1 (ET1), vasoconstrictive 21 amino acids produced by endothelial cells during ischemia and after reperfusion of the liver, is known to cause sinusoidal constriction and microcirculatory disturbances, which lead to severe tissue damage. Using a 2- hour hepatic vascular exclusion model in dogs, we tested our hypothesis that neutralization of ET-1 by monoclonal anti-ET-1 and anti-ET-2 antibody (AwETN40) abates vascular dysfunction and ameliorates ischemia/reperfusion injury of the liver. Study Design: After skeletonization, the liver was made totally ischemic by cross-clamping the portal vein, the hepatic artery, and the vena cava (above and below the liver). Venovenous bypass was used to decompress splanchnic and inferior systemic congestion. AwETN40, 5 mg/kg, was administered intravenously 10 minutes before ischemia (treatment group, n = 5). Nontreated animals were used as controls (control group, n = 10). Animal survival, hepatic tissue blood flow, liver function tests; total bile acid, high-energy phosphate, ET-1 levels, and liver histopathology were studied. Results: Treatment with AwETN40 improved 2-week animal survival from 30% to 100%. Hepatic tissue blood flow after reperfusion was significantly higher in the treatment group. The treatment significantly attenuated liver enzyme release, total bile acid, and changes in adenine nucleotides. Immunoreactive ET-1 levels in the hepatic venous blood of the control group showed a significant increase and remained high for up to 24 hours after reperfusion. Histopathologic alterations were significantly lessened in the treatment group. Conclusions: These results indicate that ET-1 is involved in ischemia/reperfusion injury of the liver, which can be ameliorated by the monoclonal anti-ET-1 and antiET-2 antibody AwETN40
An Analysis of the Quantum Penny Flip Game using Geometric Algebra
We analyze the quantum penny flip game using geometric algebra and so
determine all possible unitary transformations which enable the player Q to
implement a winning strategy. Geometric algebra provides a clear visual picture
of the quantum game and its strategies, as well as providing a simple and
direct derivation of the winning transformation, which we demonstrate can be
parametrized by two angles. For comparison we derive the same general winning
strategy by conventional means using density matrices.Comment: 8 Pages, 1 Figure, accepted for publication in the Journal of
Physical Society of Japa
- …