3,235 research outputs found
Bioink properties before, during and after 3D bioprinting
Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application. During tissue formation these properties are influenced by the amount of cells present in the construct, their proliferation, migration and interaction with the material. A calibrated computational framework is able to predict the tissue development and maturation and to optimize the bioprinting input parameters such as the starting material, the initial cell loading and the construct geometry. In this contribution relevant bioink properties are reviewed and discussed on the example of most popular bioprinting approaches. The effect of cells on hydrogel processing and vice versa is highlighted. Furthermore, numerical approaches were reviewed and implemented for depicting the cellular mechanics within the hydrogel as well as for prediction of mechanical properties to achieve the desired hydrogel construct considering cell density, distribution and material-cell interaction
Electronic structure of YbB: Is it a Topological Insulator or not?
To resolve the controversial issue of the topological nature of the
electronic structure of YbB, we have made a combined study using density
functional theory (DFT) and angle resolved photoemission spectroscopy (ARPES).
Accurate determination of the low energy band topology in DFT requires the use
of modified Becke-Johnson exchange potential incorporating the spin-orbit
coupling and the on-site Coulomb interaction of Yb electrons as large
as 7 eV. We have double-checked the DFT result with the more precise GW band
calculation. ARPES is done with the non-polar (110) surface termination to
avoid band bending and quantum well confinement that have confused ARPES
spectra taken on the polar (001) surface termination. Thereby we show
definitively that YbB has a topologically trivial B 2-Yb 5
semiconductor band gap, and hence is a non-Kondo non-topological insulator
(TI). In agreement with theory, ARPES shows pure divalency for Yb and a -
band gap of 0.3 eV, which clearly rules out both of the previous scenarios of
- band inversion Kondo TI and - band inversion non-Kondo TI. We
have also examined the pressure-dependent electronic structure of YbB,
and found that the high pressure phase is not a Kondo TI but a
\emph{p}-\emph{d} overlap semimetal.Comment: The main text is 6 pages with 4 figures, and the supplementary
information contains 6 figures. 11 pages, 10 figures in total To be appeared
in Phys. Rev. Lett. (Online publication is around March 16 if no delays.
Superconductivity Near Ferromagnetism in MgCNi3
An unusual quasi-two-dimensional heavy band mass van Hove singularity (vHs)
lies very near the Fermi energy in MgCNi3, recently reported to superconduct at
8.5 K. This compound is strongly exchange enhanced and is unstable to
ferromagnetism upon hole doping with 12% Mg --> Na or Li. The 1/4-depleted fcc
(frustrated) Ni sublattice and lack of Fermi surface nesting argues against
competing antiferromagnetic and charge density wave instabilities. We identify
an essentially infinite mass along the M-Gamma line, leading to
quasi-two-dimensionality of this vHs may promote unconventional p-wave pairing
that could coexist with superconductivity.Comment: 4 two-column pages, 4 figure
Theory of electronic transport through a triple quantum dot in the presence of magnetic field
Theory of electronic transport through a triangular triple quantum dot
subject to a perpendicular magnetic field is developed using a tight binding
model. We show that magnetic field allows to engineer degeneracies in the
triple quantum dot energy spectrum. The degeneracies lead to zero electronic
transmission and sharp dips in the current whenever a pair of degenerate states
lies between the chemical potential of the two leads. These dips can occur with
a periodicity of one flux quantum if only two levels contribute to the current
or with half flux quantum if the three levels of the triple dot contribute. The
effect of strong bias voltage and different lead-to-dot connections on
Aharonov-Bohm oscillations in the conductance is also discussed
Universality in two-dimensional Kardar-Parisi-Zhang growth
We analyze simulations results of a model proposed for etching of a
crystalline solid and results of other discrete models in the 2+1-dimensional
Kardar-Parisi-Zhang (KPZ) class. In the steady states, the moments W_n of
orders n=2,3,4 of the heights distribution are estimated. Results for the
etching model, the ballistic deposition (BD) model and the
temperature-dependent body-centered restricted solid-on-solid model (BCSOS)
suggest the universality of the absolute value of the skewness S = W_3 /
(W_2)^(3/2) and of the value of the kurtosis Q = W_4 / (W_2)^2 - 3. The sign of
the skewness is the same of the parameter \lambda of the KPZ equation which
represents the process in the continuum limit. The best numerical estimates,
obtained from the etching model, are |S| = 0.26 +- 0.01 and Q = 0.134 +- 0.015.
For this model, the roughness exponent \alpha = 0.383 +- 0.008 is obtained,
accounting for a constant correction term (intrinsic width) in the scaling of
the squared interface width. This value is slightly below previous estimates of
extensive simulations and rules out the proposal of the exact value \alpha=2/5.
The conclusion is supported by results for the ballistic deposition model.
Independent estimates of the dynamical exponent and of the growth exponent are
1.605 <= z <= 1.64 and \beta = 0.229 +- 0.005, respectively, which are
consistent with the relations \alpha + z = 2 and z = \alpha / \beta.Comment: 8 pages, 9 figures, to be published in Phys. Rev.
Nonequilibrium Statistical Mechanics of the Zero-Range Process and Related Models
We review recent progress on the zero-range process, a model of interacting
particles which hop between the sites of a lattice with rates that depend on
the occupancy of the departure site. We discuss several applications which have
stimulated interest in the model such as shaken granular gases and network
dynamics, also we discuss how the model may be used as a coarse-grained
description of driven phase-separating systems. A useful property of the
zero-range process is that the steady state has a factorised form. We show how
this form enables one to analyse in detail condensation transitions, wherein a
finite fraction of particles accumulate at a single site. We review
condensation transitions in homogeneous and heterogeneous systems and also
summarise recent progress in understanding the dynamics of condensation. We
then turn to several generalisations which also, under certain specified
conditions, share the property of a factorised steady state. These include
several species of particles; hop rates which depend on both the departure and
the destination sites; continuous masses; parallel discrete-time updating;
non-conservation of particles and sites.Comment: 54 pages, 9 figures, review articl
Dynamics of vibrofluidized granular gases in periodic structures
The behavior of a driven granular gas in a container consisting of
connected compartments is studied employing a microscopic kinetic model. After
obtaining the governing equations for the occupation numbers and the granular
temperatures of each compartment we consider the various dynamical regimes. The
system displays interesting analogies with the ordering processes of phase
separating mixtures quenched below the their critical point. In particular, we
show that below a certain value of the driving intensity the populations of the
various compartments become unequal and the system clusterizes. Such a
phenomenon is not instantaneous, but is characterized by a time scale, ,
which follows a Vogel-Vulcher exponential behavior. On the other hand, the
reverse phenomenon which involves the ``evaporation'' of a cluster due to the
driving force is also characterized by a second time scale which diverges at
the limit of stability of the cluster.Comment: 11 pages, 17 figure
Band Calculations for Ce Compounds with AuCu-type Crystal Structure on the basis of Dynamical Mean Field Theory I. CePd and CeRh
Band calculations for Ce compounds with the AuCu-type crystal structure
were carried out on the basis of dynamical mean field theory (DMFT). The
auxiliary impurity problem was solved by a method named NCAvc
(noncrossing approximation including the state as a vertex correction).
The calculations take into account the crystal-field splitting, the spin-orbit
interaction, and the correct exchange process of the virtual excitation. These are necessary features in the
quantitative band theory for Ce compounds and in the calculation of their
excitation spectra. The results of applying the calculation to CePd and
CeRh are presented as the first in a series of papers. The experimental
results of the photoemission spectrum (PES), the inverse PES, the
angle-resolved PES, and the magnetic excitation spectra were reasonably
reproduced by the first-principles DMFT band calculation. At low temperatures,
the Fermi surface (FS) structure of CePd is similar to that of the band
obtained by the local density approximation. It gradually changes into a form
that is similar to the FS of LaPd as the temperature increases, since the
band shifts to the high-energy side and the lifetime broadening becomes
large.}Comment: 12 pasges, 13 figure
Factorization and polarization in linearized gravity
We investigate all the four-body graviton interaction processes:
, , and with
as an elementary particle of spin less than two in the context of linearized
gravity except the spin-3/2 case. We show explicitly that gravitational gauge
invariance and Lorentz invariance cause every four-body graviton scattering
amplitude to be factorized. We explore the implications of this factorization
property by investigating polarization effects through the covariant density
matrix formalism in each four-body graviton scattering process.Comment: 45 pages, figures are included (uses pictex), RevTe
Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at z>1
We identify an abundant population of extreme emission line galaxies (EELGs)
at redshift z~1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy
Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3
(HST/WFC3). 69 EELG candidates are selected by the large contribution of
exceptionally bright emission lines to their near-infrared broad-band
magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission
lines -- with rest-frame equivalent widths ~1000\AA -- in the four candidates
that have HST/WFC3 grism observations, we conclude that these objects are
galaxies with 10^8 Msol in stellar mass, undergoing an enormous starburst phase
with M_*/(dM_*/dt) of only ~15 Myr. These bursts may cause outflows that are
strong enough to produce cored dark matter profiles in low-mass galaxies. The
individual star formation rates and the co-moving number density (3.7x10^-4
Mpc^-3) can produce in ~4 Gyr much of the stellar mass density that is
presently contained in 10^8-10^9 Msol dwarf galaxies. Therefore, our
observations provide a strong indication that many or even most of the stars in
present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z>1.Comment: accepted for publication in ApJ; 10 pages; 6 figures; 1 tabl
- …