89 research outputs found

    Investigation of the interaction between the MIR-503 and CD40 genes in irradiated U937 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a group of small noncoding RNAs that take part in diverse biological processes by suppressing target gene expression. Relatively few miRNAs have been studied in detail, especially miR-503, and hence the biological relevance of majority remains to be uncovered. Whether altered expression of miRNA-503 affects the immunity response to radiotherapy has yet to be addressed.</p> <p>Results</p> <p>In the present study, we applied ionizing radiation with a dose of either 0.1 Gy or 5 Gy to irradiate U937 cells to confirm CD40 as a miR-503 target, which was identified using a bioimformatics tool. In high dose (5 Gy) ionizing-irradiated U937 cells, expression of miR-503 was up regulated while the expression of CD40 gene was down regulated. Using the transfection of the miR-503 gene into U937 cells and Luciferase assay, we confirmed that miR-503 suppressed the expression of CD40, and was a negtive regulator of CD40.</p> <p>Conclusions</p> <p>To our knowledge, we are the first to describe involvement of miR-503 in radiobiological effect at a molecular level. This initial finding suggested the evidence that ionizing radiation could alter the expression of miR-503 and its target gene CD40, and may be very important to shed light on a possible mechanism regarding regulation of immune responses to irradiation.</p

    Inhibitory effects of diarsenic trioxide (As2O3) on hepatocellular carcinoma cells exerted by regulation of promyelocytic leukemia protein levels

    Get PDF
    Previous Chinese research revealed that diarsenic trioxide (As2O3) inhibits acute promyelocytic leukemia (PML) cell proliferation and initiates apoptosis through degradation of the PML-retinoic acid receptor protein. This study was to analyse whether As2O3 also had an effect on hepatocellular carcinoma (HCC) cells. As2O3 effects on various HCC cell lines and primary HCC cells were investigated in time and dose series, including measurements of cell growth, PML mRNA and protein expression, xenografted tumor formation, and the self-renewal Oct4 and hepatocyte marker expressions in mouse model xenografts or cells treated with PML siRNA. The results were analyzed by immunocytochemistry, quantitative reverse transcription PCR and western blotting as well as indocyanine green and Periodic Acid Schiff staining. As2O3 inhibited HCC cell and HCC cell-derived xenograft tumor formation in a time-dependent manner and reduced PML protein expression in HCC cells, but had limited effects on PML mRNA levels in cell nuclei. The HCC cell line HuH7 treated with As2O3 showed a decreased expression of alpha-fetoprotein and increased expression and transcription of mature hepatocyte markers, indicating differentiation of HCC cells into hepatocytes. Cytokeratin 18 protein and mRNA levels as well as tyrosine aminotransferase and apolipoprotein B mRNA transcriptions were enhanced by As2O3 as were the numbers of indocyanine green and Periodic Acid Schiff stained cells. In addition, As2O3 downregulated the expression of Oct4. In conclusion, since As2O3 inhibited HCC cell proliferation and HCC cell-derived xenograft tumor formation it is suggested that an appropriate concentration of As2O3 might be a promising therapy to treat HCC

    Contrasting responses of water use efficiency to drought across global terrestrial ecosystems

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Drought is an intermittent disturbance of the water cycle that profoundly affects the terrestrial carbon cycle. However, the response of the coupled water and carbon cycles to drought and the underlying mechanisms remain unclear. Here we provide the first global synthesis of the drought effect on ecosystem water use efficiency (WUE = gross primary production (GPP)/evapotranspiration (ET)). Using two observational WUE datasets (i.e., eddy-covariance measurements at 95 sites (526 site-years) and global gridded diagnostic modelling based on existing observation and a data-adaptive machine learning approach), we find a contrasting response of WUE to drought between arid (WUE increases with drought) and semi-arid/sub-humid ecosystems (WUE decreases with drought), which is attributed to different sensitivities of ecosystem processes to changes in hydro-climatic conditions. WUE variability in arid ecosystems is primarily controlled by physical processes (i.e., evaporation), whereas WUE variability in semi-arid/sub-humid regions is mostly regulated by biological processes (i.e., assimilation). We also find that shifts in hydro-climatic conditions over years would intensify the drought effect on WUE. Our findings suggest that future drought events, when coupled with an increase in climate variability, will bring further threats to semi-arid/sub-humid ecosystems and potentially result in biome reorganization, starting with low-productivity and high water-sensitivity grassland

    Preparation of a nano emodin transfersome and study on its anti-obesity mechanism in adipose tissue of diet-induced obese rats

    Get PDF
    OBJECTIVE: To describe the preparation of nano emodin transfersome (NET) and investigate its effect on mRNA expression of adipose triglyceride lipase (ATGL) and G0/G1 switch gene 2 (G0S2) in adipose tissue of diet-induced obese rats. METHODS: NET was prepared by film-ultrasonic dispersion method. The effects of emodin components at different ratios on encapsulation efficiency were investigated.The NET envelopment rate was determined by ultraviolet spectrophotometry. The particle size and Zeta potential of NET were evaluated by Zetasizer analyzer. Sixty male SD rats were assigned to groups randomly. After 8-week treatment, body weight, wet weight of visceral fat and the percentage of body fat (PBF) were measured. Fasting blood glucose and serum lipid levels were determined. The adipose tissue section was HE stained, and the cellular diameter and quantity of adipocytes were evaluated by light microscopy. The mRNA expression of ATGL and G0S2 from the peri-renal fat tissue was assayed by RT-PCR. RESULTS: The appropriate formulation was deoxycholic acid sodium salt vs. phospholipids 1:8, cholesterol vs. phospholipids 1:3, vitamin Evs. phospholipids 1:20, and emodin vs. phospholipid 1:6. Zeta potential was −15.11 mV, and the particle size was 292.2 nm. The mean encapsulation efficiency was (69.35 ± 0.25)%. Compared with the obese model group, body weight, wet weight of visceral fat, PBF and mRNA expression of G0S2 from peri-renal fat tissue were decreased significantly after NET treatment (all P < 0.05), while high-density lipoprotein cholesterol (HDL-C), the diameter of adipocytes and mRNA expression of ATGL from peri-renal fat tissue were increased significantly (all P < 0.05). CONCLUSION: The preparation method is simple and reasonable. NET with negative electricity was small and uniform in particle size, with high encapsulation efficiency and stability. NET could reduce body weight and adipocyte size, and this effect was associated with the up-regulation of ATGL, down-regulation of G0S2 expression in the adipose tissue, and improved insulin sensitivity

    The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region

    Get PDF
    Data and code availability The authors declare that the majority of the data supporting the findings of this study are available through the links given in the paper. The unpublished data are available from the corresponding author upon request. The new estimate of Tibetan soil carbon stock and R code are available in a persistent repository (https://figshare.com/s/4374f28d880f366eff6d). Acknowledgements This study was supported by the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (XDA20050101), the National Natural Science Foundation of China (41871104), Key Research and Development Programs for Global Change and Adaptation (2017YFA0603604), International Partnership Program of the Chinese Academy of Sciences (131C11KYSB20160061) and the Thousand Youth Talents Plan project in China. Jinzhi Ding acknowledges the General (2017M620922) and the Special Grade (2018T110144) of the Financial Grant from the China Postdoctoral Science Foundation.Peer reviewedPublisher PD

    Subdiffraction Focusing Enabled by a Fano Resonance

    No full text
    Radiationless electromagnetic interference (REI) has been used to achieve focusing below Abbe’s diffraction limit. Here, we demonstrate an approach to REI that uses the Fano resonance of subwavelength slits to achieve subdiffraction focusing. Two main features of the Fano resonance are critical: (1) The Fano resonance suppresses radiation by destructive interference, thereby allowing for REI, and (2) the Fano resonance creates a resonant field enhancement allowing one to overcome evanescent decay, which is different from past approaches to REI. An analytic theory is introduced to explain these results. While the analytic theory is formulated for a perfect electric conductor, comprehensive numerical simulations show the applicability in the visible regime, where losses and plasmonic effects play a role
    corecore