5 research outputs found

    Proton magnetic resonance spectroscopy of neurometabo­lites in the hippocampi of aggressive and tame male rats

    Get PDF
    Proportions of major neurometabolites with regard to their total amount in the dorsal region of the hippocampus were studied in adult male rats of populations selected for long for increase and absence of aggressivefearful response to humans and in unselected vivarium- kept rats by 1H magnetic resonance spectrometry. Tame and unselected males showed no significant differences in the proportions of any neurometabolites studied. Differences in the proportions of some neurometabolites were found in aggressive vs. tame and in aggressive vs. unselected animals. Tame animals showed higher pro­portions of GABA, N-acetylaspartate (NAA), and choline derivatives and a lower proportion of phosphoryl­ethanolamine than aggressive ones. It is likely that the elevated content of GABA, one of the main inhibitory neurotransmitters in the brain, lowers excita­tion intensity in tame pups in comparison to aggressive ones. In comparison to unselected animals, aggressive rats demonstrated higher proportions of glutamine, aspartate, phosphorylethanolamine, and lactate and lower proportions of NAA and creatinine+ phosphocreatinine. Aspartate is one of the main excitement transmitter, and its elevated proportion in the brain of aggressive rats may favor more intense excitation than in unselected rats. In contrast, the elevated proportion of glutamine in aggressive rats vs. tame rats may be indicative of (1) a metabolic disturbance in the glutamate–glutamine cycle, which links neural and glial cells, and (2) decrease in the activity of glutaminase, the enzyme converting glutamine to glutamate (GABA precursor). The reduced NAA proportion together with the elevated proportion of glutamine in aggressive rats point to impaired energy metabolism in comparison to unselected animals. The differences in neurometabolite patterns between hippocampi of male rats of the unselec­ted and aggressive populations suggest the existence of different neurobiological mechanisms governing aggression manifestation

    Effects of neonatal handling on behavior and stress-response in rats selected for reaction towards humans

    Get PDF
    It is known that neonatal handling may cause longterm changes in neurobiological and behavioral phenotypes. Neonatal handling of rats selected for enhanced aggressiveness towards humans (“aggressive” rats of generation 44) significantly mitigated aggression and stress responsiveness. However, levels of corticosterone in stress in intact aggressive rats of later generations (70s) were lower than in generation 44, which differed little from the corresponding value in “tame” rats, selected in the opposite direction, for the absence of aggressiveness towards humans. The study was conducted with Norway rat populations of the 75th generation of selection for aggressive and tame behavior, respectively. The goal was to find out whether the decrease in stress response in aggressive rats at the current stage of selection was accompanied by a decrease in the influence of handling on aggressiveness. It was found that neonatal handling of aggressive animals caused a significant decrease in aggressiveness, although considerably smaller than in generation 44. In both aggressive and tame rats, the blood corticosterone level at stress was getting back to the basal level for a longer time than in the corresponding control groups. Neonatal handling decreased the amount of mRNA for the glucocorticoid receptor (GR) in the hippocampus of aggressive rats but did not affect significantly the amount of mRNA for the corticotropin-releasing hormone (CRH) in the hypothalamus. However, higher contents of CRH mRNA were recorded in aggressive rats than in tame ones in the control groups. However, no differences in glucocorticoid receptor mRNA  were found between the strains in contrast to earlier generations. It was shown that neonatal handling was beneficial for maternal behavior in tame rats. Thus, the results obtained in the 75th generation of selection indicate that the effect of handling on aggressiveness weakens with decreasing stress responsiveness in aggressive rats. This is likely to be related to the changing amount of GR in the hippocampus and stronger glucocorticoidmediated feedback at the current stage of selection. The minor prolongation of the stress response appears to be related to the stressing component of neonatal handling rather than to changes in maternal care

    Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two strains of the silver fox (<it>Vulpes vulpes</it>), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed.</p> <p>Results</p> <p>cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p < 0.05) was observed for 335 genes, fewer than 3% of the total number of genes identified in the fox transcriptome.</p> <p>Conclusions</p> <p>Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information.</p

    EFFECTS OF SOCIAL EXPERIENCE IN ADOLESCENCE: BEHAVIOR AND STRESS-RESPONSE IN NORWAY RATS SELECTED FOR ATTITUDE TO HUMANS

    Full text link
    The influence of social experience in adolescence (early separation from the mother and change partner in cage and keeping in twos in cage) on anxiety behavior, social behavior and stress-response investigated in tame, aggressive and unselected male rats. Aggressive behavior in experimental unselected and aggressive rats reduced in comparison with control animals. The testosterone level reduced after restriction stress in experimental unselected rats and corticosterone level reduced in experimental aggressive rats in comparison with control animals.Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 12-04-00494-а)

    A meiotic linkage map of the silver fox, aligned and compared to the canine genome

    Get PDF
    A meiotic linkage map is essential for mapping traits of interest and is often the first step toward understanding a cryptic genome. Specific strains of silver fox (a variant of the red fox, Vulpes vulpes), which segregate behavioral and morphological phenotypes, create a need for such a map. One such strain, selected for docility, exhibits friendly dog-like responses to humans, in contrast to another strain selected for aggression. Development of a fox map is facilitated by the known cytogenetic homologies between the dog and fox, and by the availability of high resolution canine genome maps and sequence data. Furthermore, the high genomic sequence identity between dog and fox allows adaptation of canine microsatellites for genotyping and meiotic mapping in foxes. Using 320 such markers, we have constructed the first meiotic linkage map of the fox genome. The resulting sex-averaged map covers 16 fox autosomes and the X chromosome with an average inter-marker distance of 7.5 cM. The total map length corresponds to 1480.2 cM. From comparison of sex-averaged meiotic linkage maps of the fox and dog genomes, suppression of recombination in pericentromeric regions of the metacentric fox chromosomes was apparent, relative to the corresponding segments of acrocentric dog chromosomes. Alignment of the fox meiotic map against the 7.6x canine genome sequence revealed high conservation of marker order between homologous regions of the two species. The fox meiotic map provides a critical tool for genetic studies in foxes and identification of genetic loci and genes implicated in fox domestication
    corecore