22 research outputs found

    Off-line evaluation of indoor positioning systems in different scenarios: the experiences from IPIN 2020 competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001

    Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001.Peer reviewe

    Trajectory Tracking and Adaptive Fuzzy Vibration Control of Multilink Space Manipulators with Experimental Validation

    No full text
    This paper investigates the problem of modeling and controlling a space manipulator system with flexible joints and links. The dynamic model of the flexible manipulator system is derived by using the Lagrange equation and the floating frame of reference formulation, where the assumed mode method is adopted to discretize flexible links, while the flexible joints are regarded as linear torsion springs. The natural characteristics of a single flexible link manipulator, under three different boundary conditions, are compared to reveal the effect of the flexibility of joints on the manipulator system and to choose suitable assumed modes. Furthermore, singular perturbation theory is introduced to decompose the system into a slow subsystem that describes the rigid-body motion, and a fast subsystem that describes the elastic vibration. Since the system is underactuated, a compound control strategy, which consists of the underactuated computed torque controller and the adaptive fuzzy controller, is presented to improve the accuracy of the trajectory tracking of the flexible joints and to suppress the elastic vibration of the flexible links, in the meantime. Both numerical simulation and experimentation are performed to verify the effectiveness of the proposed compound controller, and a comparison with the proportional-derivative (PD) controller is provided to highlight its superiority in suppressing the residual vibration of the tip

    Numerical simulation on the thermal dynamic behavior of liquid hydrogen in a storage tank for trailers

    No full text
    In the present study, a numerical model was established to investigate the thermal dynamic behavior of liquid hydrogen in a 40-foot ISO tank. The volume of fluids (VOF) method was applied to capture the liquid surface, and a phase change model was used to describe the evaporation phenomenon of hydrogen. The mesh independence analysis and the experimental validation have been made. Under different filling levels, motion statuses, and heat leakage conditions, the variations in pressure and temperature of the tank were investigated. The pressure of 90% filling level case was reduced by 12.09%, compared to the 50% case. Besides, the pressure of the sloshing condition has increased twofold, contrasted with the stationary one, and thermal stratification disappeared. Additionally, 16.67 min were taken for the ullage pressure to reach around 1 MPa in emergencies of being extremely heated. Some valuable conclusions and suggestions for the transportation of liquid hydrogen arrived. Those could be the references to predict the release time of boil-off hydrogen, and primarily support for gas-releasing control strategies

    Evaluation criterion for filling process of cryo-compressed hydrogen storage vessel

    No full text
    Cryo-compressed hydrogen (CcH2) is a promising method for hydrogen storage. However, a lack of existing evaluation for the CcH2 filling process has impeded the development of the CcH2-related standards and future applications. In this study, a criterion based on linear scaling transformation was initiated to evaluate the filling process. The criterion scores important aspects of filling based on four normalized parameters: filling duration, gas consumption, and temperature rise in two parts of the liner. It is expected to facilitate a fast and intuitive assessment of the filling scheme. Two filling strategies for the CcH2 vessels of 140 L and 210 L have been proposed to establish the combined condition of 77 K and 20 MPa. A comprehensive comparison of twenty-two different scenarios for both cylinder types, employing data obtained from numerical simulations with the SST k − ω turbulence model. The results showed that the scenarios with progressive mass flow rates (PMFR) consistently outperformed those with constant mass flow rates (CMFR) by no less than 4.5 %, underscoring the superior storage efficiency of the PMFR filling strategy for the CcH2 cylinder. Notably, the scheme featuring a mass flow rate change of 4 g/s2 for the 140 L vessel and 6 g/s2 for the 210 L vessel had the highest score, respectively. This research assists in the designing and decision-making process for the filling procedures and may inform the development of related standards

    Identification and validation of IRF6 related to ovarian cancer and biological function and prognostic value

    No full text
    Abstract Background Ovarian cancer (OC) is a severe gynecological malignancy with significant diagnostic and therapeutic challenges. The discovery of reliable cancer biomarkers can be used to adjust diagnosis and improve patient care. However, serous OC lacks effective biomarkers. We aimed to identify novel biomarkers for OC and their pathogenic causes. Methods The present study used the differentially expressed genes (DEGs) obtained from the “Limma” package and WGCNA modules for intersection analysis to obtain DEGs in OC. Three hub genes were identified—claudin 3 (CLDN3), interferon regulatory factor 6 (IRF6), and prostasin (PRSS8)—by searching for hub genes through the PPI network and verifying them in GSE14407, GSE18520, GSE66957, and TCGA + GTEx databases. The correlation between IRF6 and the prognosis of OC patients was further confirmed in Kaplan-Miller Plotter. RT-qPCR and IHC confirmed the RNA and protein levels of IRF6 in the OC samples. The effect of IRF6 on OC was explored using transwell invasion and scratch wound assays. Finally, we constructed a ceRNA network of hub genes and used bioinformatics tools to predict drug sensitivity. Results The joint analysis results of TCGA, GTEx, and GEO databases indicated that IRF6 RNA and protein levels were significantly upregulated in serous OC and were associated with OS and PFS. Cell function experiments revealed that IRF6 knockdown inhibited SKOV3 cell proliferation, migration and invasion. Conclusion IRF6 is closely correlated with OC development and progression and could be considered a novel biomarker and therapeutic target for OC patients

    Evaluation criterion for filling process of cryo-compressed hydrogen storage vessel

    No full text
    Cryo-compressed hydrogen (CcH2) is a promising method for hydrogen storage. However, a lack of existing evaluation for the CcH2 filling process has impeded the development of the CcH2-related standards and future applications. In this study, a criterion based on linear scaling transformation was initiated to evaluate the filling process. The criterion scores important aspects of filling based on four normalized parameters: filling duration, gas consumption, and temperature rise in two parts of the liner. It is expected to facilitate a fast and intuitive assessment of the filling scheme. Two filling strategies for the CcH2 vessels of 140 L and 210 L have been proposed to establish the combined condition of 77 K and 20 MPa. A comprehensive comparison of twenty-two different scenarios for both cylinder types, employing data obtained from numerical simulations with the SST k − ω turbulence model. The results showed that the scenarios with progressive mass flow rates (PMFR) consistently outperformed those with constant mass flow rates (CMFR) by no less than 4.5 %, underscoring the superior storage efficiency of the PMFR filling strategy for the CcH2 cylinder. Notably, the scheme featuring a mass flow rate change of 4 g/s2 for the 140 L vessel and 6 g/s2 for the 210 L vessel had the highest score, respectively. This research assists in the designing and decision-making process for the filling procedures and may inform the development of related standards
    corecore