568 research outputs found

    The effect of octahedral distortions on the electronic properties and magnetic interactions in O3 NaTMO2 compounds (TM = Ti–Ni & Zr–Pd)

    Get PDF
    The interplay between the coordination environment and magnetic properties in O3 layered sodium transition metal oxides (NaTMO2) is a fascinating and complex problem. Through detailed and comprehensive density functional investigations on O3 NaTMO2 compounds, we demonstrate that the TM ions in O3 NaMnO2, NaFeO2 and NaCoO2 adopt a high spin state. Structurally, NaMnO2 and NaPdO2 undergo Jahn–Teller distortions while NaNbO2 undergoes puckering distortion. Furthermore, in addition to Jahn–Teller distortion, NaPdO2 exhibits charge disproportionation as it contains Pd2+, Pd3+ and Pd4+ species. These distortions stabilize the inter-plane ferromagnetism. Additionally, the inter-plane ferromagnetic coupling is stabilized by kinetic p–d exchange mechanism in undistorted NaCoO2, NaNiO2 and NaTcO2. The intra-plane coupling in this family of compounds on the other hand was found to be generally weak. Only NaMnO2, NaNiO2 and NaTcO2 are predicted to show bulk ferromagnetism with estimated Curie temperatures below ∼50 K

    Double-Exchange Ferromagnetism and Orbital-Fluctuation-Induced Superconductivity in Cubic Uranium Compounds

    Full text link
    A double-exchange mechanism for the emergence of ferromagnetism in cubic uranium compounds is proposed on the basis of a jj-jj coupling scheme. The idea is {\it orbital-dependent duality} of 5f5f electrons concerning itinerant Γ8\Gamma_8^- and localized Γ7\Gamma_7^- states in the cubic structure. Since orbital degree of freedom is still active in the ferromagnetic phase, orbital-related quantum critical phenomenon is expected to appear. In fact, odd-parity p-wave pairing compatible with ferromagnetism is found in the vicinity of an orbital ordered phase. Furthermore, even-parity d-wave pairing with significant odd-frequency components is obtained. A possibility to observe such exotic superconductivity in manganites is also discussed briefly.Comment: 4 pages, 4 figures. To appear in J. Phys. Soc. Jp

    Involvement of Mhc Loci in immune responses that are not Ir-gene-controlled

    Get PDF
    Twenty-nine randomly chosen, soluble antigens, many of them highly complex, were used to immunize mice of two strains, C3H and B10.RIII. Lymphnode cells from the immunized mice were restimulated in vitro with the priming antigens and the proliferative response of the cells was determined. Both strains were responders to 28 of 29 antigens. Eight antigens were then used to immunize 11 congenic strains carrying different H-2 haplotypes, and the T-cell proliferative responses of these strains were determined. Again, all the strains responded to seven of the eight antigens. These experiments were then repeated, but this time -antibodies specific for the A (AA) or E (EE) molecules were added to the culture to block the in vitro responsiveness. In all but one of the responses, inhibition with both A-specific and E-specific antibodies was observed. The response to one antigen (Blastoinyces) was exceptional in that some strains were nonresponders to this antigen. Furthermore, the response in the responder strains was blocked with A-specific, but not with E-specific, antibodies. The study demonstrates that responses to antigens not controlled by Irr genes nevertheless require participation of class II Mhc molecules. In contrast to Ir gene-controlled responses involving either the A- or the E-molecule controlling loci (but never both), the responses not Ir-controlled involve participation of both A- and E-controlling loci. The lack of Ir-gene control is probably the result of complexity of the responses to multiple determinants. There is thus no principal difference between responses controlled and those not controlled by Ir genes: both types involve the recognition of the antigen, in the context of Mhc molecules

    On the Meissner Effect of the Odd-Frequency Superconductivity with Critical Spin Fluctuations: Possibility of Zero Field FFLO pairing

    Full text link
    We investigate the influence of critical spin fluctuations on electromagnetic responses in the odd-frequency superconductivity. It is shown that the Meissner kernel of the odd-frequency superconductivity is strongly reduced by the critical spin fluctuation or the massless spin wave mode in the antiferromagnetic phase. These results imply that the superfluid density is reduced, and the London penetration depth is lengthened for the odd-frequency pairing. It is also shown that the zero field Flude-Ferrell-Larkin-Ovchinnikov pairing is spontaneously realized both for even- and odd-frequency in the case of sufficiently strong coupling with low lying spin-modes.Comment: 10 pages, 7 figure

    On the Puzzle of Odd-Frequency Superconductivity

    Full text link
    Since the first theoretical proposal by Berezinskii, an odd-frequency superconductivity has encountered the fundamental problems on its thermodynamic stability and rigidity of a homogenous state accompanied by unphysical Meissner effect. Recently, Solenov {\it et al}. [Phys. Rev. B {\bf 79} (2009) 132502.] have asserted that the path-integral formulation gets rid of the difficulties leading to a stable homogenous phase with an ordinary Meissner effect. Here, we show that it is crucial to choose the appropriate saddle-point solution that minimizes the effective free energy, which was assumed {\it implicitly} in the work by Solenov and co-workers. We exhibit the path-integral framework for the odd-frequency superconductivity with general type of pairings, including an argument on the retarded functions via the analytic continuation to the real axis.Comment: 6 pages, in JPSJ forma

    Possible Odd-Frequency Superconductivity in Strong-Coupling Electron-Phonon Systems

    Full text link
    A possibility of the odd-frequency pairing in the strong-coupling electron-phonon systems is discussed. Using the Holstein-Hubbard model, we demonstrate that the anomalously soft Einstein mode with the frequency ωEωc\omega_{\rm E}\ll\omega_{c} (ωc\omega_{c} is the order of the renormalized bandwidth) mediates the s-wave odd-frequency triplet pairing against the ordinary even-frequency singlet pairing. It is necessary for the emergence of the odd-frequency pairing that the pairing interaction is strongly retarded as well as the strong coupling, since the pairing interaction for the odd-frequency pairing is effective only in the diagonal scattering channel, (ωn,ωn)(ωn,ωn)(\omega_{n},-\omega_{n})\to(\omega_{n'},-\omega_{n'}) with ωn=ωnωE\omega_{n'}=\omega_{n}\gtrsim \omega_{\rm E}. Namely, the odd-frequency superconductivity is realized in the opposite limit of the original BCS theory. The Ginzburg-Landau analysis in the strong-coupling region shows that the specific-heat discontinuity and the slope of the temperature dependence of the superfluid density can be quite small as compared with the BCS values, depending on the ratio of the transition temperature TcT_{c} and ωc\omega_{c}.Comment: 6 pages, 7 figures, submitted to J. Phys. Soc. Jp

    Pairing competition in a quasi-one-dimensional model of organic superconductors (TMTSF)2X_{2}X in magnetic field

    Full text link
    We microscopically study the effect of the magnetic field (Zeeman splitting) on the superconducting state in a model for quasi-one-dimensional organic superconductors (TMTSF)2X_{2}X. We investigate the competition between spin singlet and spin triplet pairings and the Fulde-Ferrell-Larkin-Ovchinnikov(FFLO) state by random phase approximation. While we studied the competition by comparison with the eigenvalue of the gap equation at a fixed temperature in our previous study (Phys. Rev. Lett. \textbf{102} (2009) 016403), here we obtain both the TcT_c for each pairing state and a phase diagram in the TT(temperature)-hzh_z(field)-VyV_y(strength of the charge fluctuation) space. The phase diagram shows that consecutive transitions from singlet pairing to the FFLO state and further to Sz=1S_z=1 triplet pairing can occur upon increasing the magnetic field when 2kF2k_{F} charge fluctuations coexist with 2kF2k_{F} spin fluctuations. In the FFLO state, the singlet d-wave and Sz=0S_{z}=0 triplet ff-wave components are strongly mixed especially when the charge fluctuations are strong.Comment: 11 pages, 9 figure

    Symmetry and Topology in Superconductors - Odd-frequency pairing and edge states -

    Full text link
    Superconductivity is a phenomenon where the macroscopic quantum coherence appears due to the pairing of electrons. This offers a fascinating arena to study the physics of broken gauge symmetry. However, the important symmetries in superconductors are not only the gauge invariance. Especially, the symmetry properties of the pairing, i.e., the parity and spin-singlet/spin-triplet, determine the physical properties of the superconducting state. Recently it has been recognized that there is the important third symmetry of the pair amplitude, i.e., even or odd parity with respect to the frequency. The conventional uniform superconducting states correspond to the even-frequency pairing, but the recent finding is that the odd-frequency pair amplitude arises in the spatially non-uniform situation quite ubiquitously. Especially, this is the case in the Andreev bound state (ABS) appearing at the surface/interface of the sample. The other important recent development is on the nontrivial topological aspects of superconductors. As the band insulators are classified by topological indices into (i) conventional insulator, (ii) quantum Hall insulator, and (iii) topological insulator, also are the gapped superconductors. The influence of the nontrivial topology of the bulk states appears as the edge or surface of the sample. In the superconductors, this leads to the formation of zero energy ABS (ZEABS). Therefore, the ABSs of the superconductors are the place where the symmetry and topology meet each other which offer the stage of rich physics. In this review, we discuss the physics of ABS from the viewpoint of the odd-frequency pairing, the topological bulk-edge correspondence, and the interplay of these two issues. It is described how the symmetry of the pairing and topological indices determines the absence/presence of the ZEABS, its energy dispersion, and properties as the Majorana fermions.Comment: 91 pages, 38 figures, Review article, references adde

    Conditions for the occurrence of acicular ferrite transformation in HSLA steels

    Get PDF
    For the class of steels collectively known as high strength low alloy (HSLA), an acicular ferrite (AF) microstructure produces an excellent combination of strength and toughness. The conditions for the occurrence of the AF transformation are, however, still unclear, especially the effects of austenite deformation and continuous cooling. In this research, a commercial HSLA steel was used and subjected to deformation via plane strain compression with strains ranging from 0 to 0.5 and continuous cooling at rates between 5 and 50 °C s −1 . Based on the results obtained from optical microscopy, scanning electron microscopy and electron backscattering diffraction mapping, the introduction of intragranular nucleation sites and the suppression of bainitic ferrite (BF) laths lengthening were identified as the two key requirements for the occurrence of AF transformation. Austenite deformation is critical to meet these two conditions as it introduces a high density of dislocations that act as intragranular nucleation sites and deformation substructures, which suppress the lengthening of BF laths through the mechanism of mechanical stabilisation of austenite. However, the suppression effect of austenite deformation is only observed under relatively slow cooling rates or high transformation temperatures, i.e., conditions where the driving force for advancing the transformation interface is not sufficient to overcome the austenite deformation substructures
    corecore