142 research outputs found

    Time-resolved photoelectron angular distributions from nonadiabatically aligned CO2 molecules with SX-FEL at SACLA

    Get PDF
    Weperformed time-resolved photoelectron spectroscopy of valence orbitals of alignedCO2 molecules using the femtosecond soft x-ray free-electron laser and the synchronized near-infrared laser. By properly ordering the individual single-shot ion images, we successfully obtained the photoelectron angular distributions (PADs) of theCO2 molecules aligned in the laboratory frame (LF). The simulations using the dipole matrix elements due to the time dependent density functional theory calculations well reproduce the experimental PADs by considering the axis distributions of the molecules. The simulations further suggest that, when the degrees of alignment can be increased up to \ue1 cos2 q\uf1 > 0.8, themolecular geometries during photochemical reactions can be extracted fromthe measured LFPADs once the accurate matrix elements are given by the calculations

    Dynamics of the photoinduced insulator-to-metal transition in a nickelate film

    Get PDF
    The control of materials properties with light is a promising approach towards the realization of faster and smaller electronic devices. With phases that can be controlled via strain, pressure, chemical composition or dimensionality, nickelates are good candidates for the development of a new generation of high performance and low consumption devices. Here we analyze the photoinduced dynamics in a single crystalline NdNiO3_3 film upon excitation across the electronic gap. Using time-resolved reflectivity and resonant x-ray diffraction, we show that the pump pulse induces an insulator-to-metal transition, accompanied by the melting of the charge order. Finally we compare our results to similar studies in manganites and show that the same model can be used to describe the dynamics in nickelates, hinting towards a unified description of these photoinduced phase transitions.Comment: 17 pages, 6 figure

    Polarization-Resolved Extreme-Ultraviolet Second-Harmonic Generation From Linbo3

    Get PDF
    Second harmonic generation (SHG) spectroscopy ubiquitously enables the investigation of surface chemistry, interfacial chemistry, as well as symmetry properties in solids. Polarization-resolved SHG spectroscopy in the visible to infrared regime is regularly used to investigate electronic and magnetic order through their angular anisotropies within the crystal structure. However, the increasing complexity of novel materials and emerging phenomena hampers the interpretation of experiments solely based on the investigation of hybridized valence states. Here, polarization-resolved SHG in the extreme ultraviolet (XUV-SHG) is demonstrated for the first time, enabling element-resolved angular anisotropy investigations. In noncentrosymmetric LiNbO3, elemental contributions by lithium and niobium are clearly distinguished by energy dependent XUV-SHG measurements. This element-resolved and symmetry-sensitive experiment suggests that the displacement of Li ions in LiNbO3, which is known to lead to ferroelectricity, is accompanied by distortions to the Nb ion environment that breaks the inversion symmetry of the NbO6 octahedron as well. Our simulations show that the measured second harmonic spectrum is consistent with Li ion displacements from the centrosymmetric position while the Nb─O bonds are elongated and contracted by displacements of the O atoms. In addition, the polarization-resolved measurement of XUV-SHG shows excellent agreement with numerical predictions based on dipole-induced SHG commonly used in the optical wavelengths. Our result constitutes the first verification of the dipole-based SHG model in the XUV regime. The findings of this work pave the way for future angle and time-resolved XUV-SHG studies with elemental specificity in condensed matter systems

    The three-dimensional structure of Drosophila melanogaster (6-4) photolyase at room temperature

    Get PDF
    (6-4) photolyases are flavoproteins that belong to the photolyase/cryptochrome family. Their function is to repair DNA lesions using visible light. Here, crystal structures of Drosophila melanogaster (6-4) photolyase [Dm(6-4)photolyase] at room and cryogenic temperatures are reported. The room-temperature structure was solved to 2.27 angstrom resolution and was obtained by serial femtosecond crystallography (SFX) using an X-ray free-electron laser. The crystallization and preparation conditions are also reported. The cryogenic structure was solved to 1.79 angstrom resolution using conventional X-ray crystallography. The structures agree with each other, indicating that the structural information obtained from crystallography at cryogenic temperature also applies at room temperature. Furthermore, UV-Vis absorption spectroscopy confirms that Dm(6-4)photolyase is photoactive in the crystals, giving a green light to time-resolved SFX studies on the protein, which can reveal the structural mechanism of the photoactivated protein in DNA repair.Peer reviewe

    Polarization-Resolved Extreme Ultraviolet Second Harmonic Generation from LiNbO3_3

    Get PDF
    Second harmonic generation (SHG) spectroscopy ubiquitously enables the investigation of surface chemistry, interfacial chemistry as well as symmetry properties in solids. Polarization-resolved SHG spectroscopy in the visible to infrared regime is regularly used to investigate electronic and magnetic orders through their angular anisotropies within the crystal structure. However, the increasing complexity of novel materials and emerging phenomena hamper the interpretation of experiments solely based on the investigation of hybridized valence states. Here, polarization-resolved SHG in the extreme ultraviolet (XUV-SHG) is demonstrated for the first time, enabling element-resolved angular anisotropy investigations. In non-centrosymmetric LiNbO3_3, elemental contributions by lithium and niobium are clearly distinguished by energy dependent XUV-SHG measurements. This element-resolved and symmetry-sensitive experiment suggests that the displacement of Li ions in LiNbO3_3, which is known to lead to ferroelectricity, is accompanied by distortions to the Nb ion environment that breaks the inversion symmetry of the NbO6_{6} octahedron as well. Our simulations show that the measured second harmonic spectrum is consistent with Li ion displacements from the centrosymmetric position by \sim0.5 Angstrom while the Nb-O bonds are elongated/contracted by displacements of the O atoms by \sim0.1 Angstrom. In addition, the polarization-resolved measurement of XUV-SHG shows excellent agreement with numerical predictions based on dipole-induced SHG commonly used in the optical wavelengths. This constitutes the first verification of the dipole-based SHG model in the XUV regime. The findings of this work pave the way for future angle and time-resolved XUV-SHG studies with elemental specificity in condensed matter systems
    corecore