82 research outputs found
Kinetic Model for Triglyceride Hydrolysis Using Lipase: Review
Triglyceride hydrolysis using lipase has been proposed as a novel method to produce raw materials in food andcosmetic industries such as diacylglycerol, monoacylglycerol, glycerol and fatty acid. In order to design a reactor forutilizing this reaction on industrial scale, constructing a kinetic model is important. Since the substrates are oil andwater, the hydrolysis takes place at oil-water interface. Furthermore, the triglyceride has three ester bonds, so that thehydrolysis stepwise proceeds. Thus, the reaction mechanism is very complicated. The difference between theinterfacial and bulk concentrations of the enzyme, substrates and products, and the interfacial enzymatic reactionmechanism should be considered in the model
KINETIC MODEL FOR TRIGLYCERIDE HYDROLYSIS USING LIPASE: REVIEW
Triglyceride hydrolysis using lipase has been proposed as a novel method to produce raw materials in food andcosmetic industries such as diacylglycerol, monoacylglycerol, glycerol and fatty acid. In order to design a reactor forutilizing this reaction on industrial scale, constructing a kinetic model is important. Since the substrates are oil andwater, the hydrolysis takes place at oil-water interface. Furthermore, the triglyceride has three ester bonds, so that thehydrolysis stepwise proceeds. Thus, the reaction mechanism is very complicated. The difference between theinterfacial and bulk concentrations of the enzyme, substrates and products, and the interfacial enzymatic reactionmechanism should be considered in the model.Keywords: Lipase, kinetic model, enzymatic reaction mechanism, hydrolysis, triglycerid
KINETIC MODEL FOR TRIGLYCERIDE HYDROLYSIS USING LIPASE: REVIEW
Abstract Triglyceride hydrolysis using lipase has been proposed as a novel method to produce raw materials in food and cosmetic industries such as diacylglycerol, monoacylglycerol, glycerol and fatty acid. In order to design a reactor for utilizing this reaction on industrial scale, constructing a kinetic model is important. Since the substrates are oil and water, the hydrolysis takes place at oil-water interface. Furthermore, the triglyceride has three ester bonds, so that the hydrolysis stepwise proceeds. Thus, the reaction mechanism is very complicated. The difference between the interfacial and bulk concentrations of the enzyme, substrates and products, and the interfacial enzymatic reaction mechanism should be considered in the model
Advances in nanocatalysts design for biofuels production
The exploitation of nanocatalysts, at the boundary between homogeneous and heterogeneous catalysis, is tracking new efficient ways to produce renewable biofuels in environmentally friendly conditions. Their solid state makes them recyclable, and their nanomateric particle size enables high activities approaching those offered by homogeneous catalysts, as well as novel and unique catalytic behaviors not accessible to solids above the nanometer range. Furthermore, the use of magnetically active materials has led to the development of nanocatalysts easily recoverable through the application of magnetic fields. In this mini-review, latest achievements in the production of advanced biofuels using stable, highly active, cheap and reusable nanocatalysts are described. Specifically, biodiesel and high density fuels have been chosen as major topics of research for the design of catalytic nanomaterials
- …