13 research outputs found
NC/Ngaマウスを用いたダニ抗原点鼻投与による喘息様モデルの作製に関する研究
取得学位 : 博士(医学), 学位授与番号 : 医博甲第1751号 , 学位授与年月日 : 平成18年3月22日, 学位授与大学 : 金沢大
Kinobeon A, purified from cultured safflower cells, is a novel and potent singlet oxygen quencher
We recently reported that kinobeon A, produced from safflower cells, suppressed the free radical-induced damage of cell and microsomal membranes. In the present study, we investigated whether kinobeon A quenches singlet oxygen, another important active oxygen species. Kinobeon A inhibited the singlet oxygen-induced oxidation of squalene. The second-order rate constant between singlet oxygen and kinobeon A was 1.15 × 1010 M-1s-1 in methanol containing 10% dimethyl sulfoxide at 37°C. Those of α-tocopherol and β-carotene, which are known potent singlet oxygen quenchers, were 4.45 × 108 M-1s-1 and 1.26 × 1010 M-1s-1, respectively. When kinobeon A was incubated with a thermolytic singlet oxygen generator, its concentration decreased. However, this change was extremely small compared to the amount of singlet oxygen formed and the inhibitory effect of kinobeon A on squalene oxidation by singlet oxygen. In conclusion, kinobeon A was a strong singlet oxygen quencher. It reacted chemically with singlet oxygen, but it was physical quenching that was mainly responsible for the elimination of singlet oxygen by kinobeon A. Kinobeon A is expected to have a preventive effect on singlet oxygen-related diseases of the skin or eyes
pH Profile of cytochrome c-catalyzed tyrosine nitration
In the present study, we investigated how cytochrome c catalyzed the nitration of tyrosine at various pHs. The cytochrome c-catalyzed nitration of tyrosine occurred in proportion to the concentration of hydrogen peroxide, nitrite or cytochrome c. Thecytochromec-catalyzed nitration of tyrosine was inhibited by catalase, sodium azide, cystein, and uric acid. These results show that the cytochrome c-catalyzednitrotyrosine formation was due to peroxidase activity. The rate constant between cytochrome c and hydrogen peroxide within the pH range of 3 - 8 was the largest at pH 6 (37°C). The amount of nitrotyrosine formed was the greatest at pH 5. At pH 3, onlycytochromec-independent nitration of tyrosine occurred in the presence of nitrite. At this pH, the UV as well as visible spectrum of cytochrome c was changed by nitrite, even in the presence of hydrogen peroxide, probably via the formation of a heme iron - nitric oxide complex. Due to this change, the peroxidase activity of cytochrome c was lost
DNA binding-dependent glucocorticoid receptor activity promotes adipogenesis via Krüppel-like factor 15 gene expression
Glucocorticoids, such as dexamethasone, have been used as in vitro inducers of adipogenesis. However, the roles of the glucocorticoid receptor (GR) in adipogenesis have not been well characterized yet. Here, we show that inhibition of GR activity using the GR antagonist RU486 prevents human mesenchymal stem cell and mouse embryonic fibroblast (MEF) differentiation into adipocytes. Moreover, in MEFs isolated from GR knockout (GRnull) and GRdim mice deficient in GR DNA-binding activity, adipogenesis was blocked. We identified glucocorticoid response element sites in the first intron of KLF15 by bioinformatical promoter analysis and confirmed their functional relevance by demonstrating GR interaction by chromatin immunoprecipitation. Moreover, transfection of MEFs with siRNA for KLF15 significantly attenuated the expressions of adipogenic-marker genes and the lipid accumulation. Our results provide a new mechanism for understanding glucocorticoids-dependent adipogenesis and that GR promotes adipogenesis via KLF15 gene expression as a transcriptional direct target
Tyk2 Plays a Restricted Role in IFNα Signaling, Although It Is Required for IL-12-Mediated T Cell Function
AbstractJanus kinases (Jaks) play an important role in signal transduction via cytokine receptors. Tyk2 is a Janus kinase, and we developed tyk2-deficient mice to study the requirement for tyk2 in vivo. Tyk2-deficient mice show no overt developmental abnormalities; however, they display a lack of responsiveness to a small amount of IFNα, although a high concentration of IFNα can fully transduce its signal even in the absence of tyk2. Furthermore, IL-12-induced T cell function is defective in these mice. In contrast, these mice respond normally to IL-6 and IL-10, both of which activate tyk2 in vitro. These observations demonstrate that tyk2 plays only a restricted role in mediating IFNα-dependent signaling while being required in mediating IL-12-dependent biological responses