135 research outputs found

    Improved Breath Phase and Continuous Adventitious Sound Detection in Lung and Tracheal Sound Using Mixed Set Training and Domain Adaptation

    Full text link
    Previously, we established a lung sound database, HF_Lung_V2 and proposed convolutional bidirectional gated recurrent unit (CNN-BiGRU) models with adequate ability for inhalation, exhalation, continuous adventitious sound (CAS), and discontinuous adventitious sound detection in the lung sound. In this study, we proceeded to build a tracheal sound database, HF_Tracheal_V1, containing 11107 of 15-second tracheal sound recordings, 23087 inhalation labels, 16728 exhalation labels, and 6874 CAS labels. The tracheal sound in HF_Tracheal_V1 and the lung sound in HF_Lung_V2 were either combined or used alone to train the CNN-BiGRU models for respective lung and tracheal sound analysis. Different training strategies were investigated and compared: (1) using full training (training from scratch) to train the lung sound models using lung sound alone and train the tracheal sound models using tracheal sound alone, (2) using a mixed set that contains both the lung and tracheal sound to train the models, and (3) using domain adaptation that finetuned the pre-trained lung sound models with the tracheal sound data and vice versa. Results showed that the models trained only by lung sound performed poorly in the tracheal sound analysis and vice versa. However, the mixed set training and domain adaptation can improve the performance of exhalation and CAS detection in the lung sound, and inhalation, exhalation, and CAS detection in the tracheal sound compared to positive controls (lung models trained only by lung sound and vice versa). Especially, a model derived from the mixed set training prevails in the situation of killing two birds with one stone.Comment: To be submitted, 31 pages, 6 figures, 5 table

    Sequence Variants of ADIPOQ

    Get PDF
    Diabetes is a serious global health problem. Large-scale genome-wide association studies identified loci for type 2 diabetes mellitus (T2DM), including adiponectin (ADIPOQ) gene and transcription factor 7-like 2 (TCF7L2), but few studies clarified the effect of genetic polymorphisms of ADIPOQ and TCF7L2 on risk of T2DM. We attempted to elucidate association between T2DM and polymorphic variations of both in Taiwan’s Chinese Han population, with our retrospective case-control study genotyping single nucleotide polymorphisms (SNPs) in ADIPOQ and TCF7L2 genes both in 149 T2DM patients and in 139 healthy controls from Taiwan. Statistical analysis gauged association of these polymorphisms with risk of T2DM to show ADIPOQ rs1501299 polymorphism variations strongly correlated with T2DM risk (P=0.042), with rs2241766 polymorphism being not associated with T2DM (P=0.967). However, both polymorphisms rs7903146 and rs12255372 of TCF7L2 were rarely detected in Taiwanese people. This study avers that ADIPOQ rs1501299 polymorphism contributes to risk of T2DM in the Taiwanese population

    A QoS-Guaranteed Coverage Precedence Routing Algorithm for Wireless Sensor Networks

    Get PDF
    For mission-critical applications of wireless sensor networks (WSNs) involving extensive battlefield surveillance, medical healthcare, etc., it is crucial to have low-power, new protocols, methodologies and structures for transferring data and information in a network with full sensing coverage capability for an extended working period. The upmost mission is to ensure that the network is fully functional providing reliable transmission of the sensed data without the risk of data loss. WSNs have been applied to various types of mission-critical applications. Coverage preservation is one of the most essential functions to guarantee quality of service (QoS) in WSNs. However, a tradeoff exists between sensing coverage and network lifetime due to the limited energy supplies of sensor nodes. In this study, we propose a routing protocol to accommodate both energy-balance and coverage-preservation for sensor nodes in WSNs. The energy consumption for radio transmissions and the residual energy over the network are taken into account when the proposed protocol determines an energy-efficient route for a packet. The simulation results demonstrate that the proposed protocol is able to increase the duration of the on-duty network and provide up to 98.3% and 85.7% of extra service time with 100% sensing coverage ratio comparing with LEACH and the LEACH-Coverage-U protocols, respectively

    Mechanism for controlling the monomer–dimer conversion of SARS coronavirus main protease

    Get PDF
    [[abstract]]The Severe acute respiratory syndrome coronavirus (SARS-CoV) main protease (Mpro) cleaves two virion polyproteins (pp1a and pp1ab); this essential process represents an attractive target for the development of anti-SARS drugs. The functional unit of Mpro is a homodimer and each subunit contains a His41/Cys145 catalytic dyad. Large amounts of biochemical and structural information are available on Mpro; nevertheless, the mechanism by which monomeric Mpro is converted into a dimer during maturation still remains poorly understood. Previous studies have suggested that a C-terminal residue, Arg298, interacts with Ser123 of the other monomer in the dimer, and mutation of Arg298 results in a monomeric structure with a collapsed substrate-binding pocket. Interestingly, the R298A mutant of Mpro shows a reversible substrate-induced dimerization that is essential for catalysis. Here, the conformational change that occurs during substrate-induced dimerization is delineated by X-ray crystallography. A dimer with a mutual orientation of the monomers that differs from that of the wild-type protease is present in the asymmetric unit. The presence of a complete substrate-binding pocket and oxyanion hole in both protomers suggests that they are both catalytically active, while the two domain IIIs show minor reorganization. This structural information offers valuable insights into the molecular mechanism associated with substrate-induced dimerization and has important implications with respect to the maturation of the enzyme.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]電子

    Extracellular Pgk1 interacts neural membrane protein enolase-2 to improve the neurite outgrowth of motor neurons

    No full text
    Abstract Understanding the molecular interaction between ligand and receptor is important for providing the basis for the development of regenerative drugs. Although it has been reported that extracellular phosphoglycerate kinase 1 (Pgk1) can promote the neurite outgrowth of motoneurons, the Pgk1-interacting neural receptor remains unknown. Here we show that neural membranous Enolase-2 exhibits strong affinity with recombinant Pgk1-Flag, which is also evidently demonstrated by immunoelectron microscopy. The 325th-417th domain of Pgk1 interacts with the 405th-431st domain of Enolase-2, but neither Enolase-1 nor Enolase-3, promoting neurite outgrowth. Combining Pgk1 incubation and Enolase-2 overexpression, we demonstrate a highly significant enhancement of neurite outgrowth of motoneurons through a reduced p-P38-T180/p-Limk1-S323/p-Cofilin signaling. Collectively, extracellular Pgk1 interacts neural membrane receptor Enolase-2 to reduce the P38/Limk1/Cofilin signaling which results in promoting neurite outgrowth. The extracellular Pgk1-specific neural receptor found in this study should provide a material for screening potential small molecule drugs that promote motor nerve regeneration

    Intraoperative calculus or hemorrhage in transurethral seminal vesiculoscopy as a risk factor for recurrent hemospermia.

    No full text
    We have summarized our experience regarding transurethral seminal vesiculoscopy (TUSV) and analyzed both its recurrence status and the risk factors for recurrence. From January 2010 to December 2020, 48 patients with intractable hemospermia received successful TUSV at Taichung Invalids General Hospital. Upon analysis of the intraoperative findings, the five-year disease-free Survival rates (DFS) were 74.1% in the no calculus group compared to 37.1% in the calculus group with a significant difference (log-rank p = 0.015), 75.0% in the no hemorrhage or no blood clot group compared to 43.2% in the hemorrhage or blood clot group with significant difference (log-rank p = 0.032). Univariate analysis showed intraoperative calculus (p = 0.040; HR: 2.94, 95% CI: 1.05-8.21) to be significantly associated with recurrence (p < 0.05). Patients with intractable hemospermia who were diagnosed with stones or blood clots found during TUSV experienced a higher rate of hemospermia recurrence
    corecore