245 research outputs found

    N‑Linked Glycosylation Prevents Deamidation of Glycopeptide and Glycoprotein

    Get PDF
    Deamidation has been recognized as a common spontaneous pathway of protein degradation and a prevalent concern in the pharmaceutical industry; deamidation caused the reduction of protein/peptide drug efficacy and shelf life in several cases. More importantly, deamidation of physiological proteins is related to several human diseases and considered a timer for the diseases. N-linked glycosylation has a variety of significant biological functions, and it interestingly occurs right on the deamidation site-asparagine. It has been perceived that N-glycosylation could prevent deamidation, but experimental support is still lacking for clearly understanding the role of N-glycosylation on deamidation. Our results presented that deamidation is prevented by naturally occurring N-linked glycosylation. Glycopeptides and corresponding nonglycosylated peptides were used to compare their deamidation rates. All the nonglycosylated peptides have different half-lives ranging from one to 20 days, for the corresponding glycosylated peptides; all the results showed that the deamidation reaction was significantly reduced by the introduction of N-linked glycosylation. A glycoprotein, RNase B, also showed a significantly elongated deamidation half-life compared to nonglycosylated protein RNase A. At last, N-linked glycosylation on INGAP-P, a therapeutic peptide, increased the deamidation half-life of INGAP-P as well as its therapeutic potency

    Vehicles for atopic dermatitis therapies: more than just a placebo

    Get PDF
    A topical vehicle is a ‘carrier system’ for an active pharmaceutical (or cosmetic) substance, referred to hereafter as the drug, but a vehicle may also be used on its own as an emollient to ameliorate dry skin. It is well established that the vehicle plays an important role in determining the bioavailability of a given drug at its ultimate target within the skin. Yet in the treatment of atopic eczema/dermatitis (AD), wherein the structure and function of the skin's outer barrier play a pivotal role in the development and course of the condition, the interaction of the vehicle with this barrier carries a particular importance. It is now clear that the often-considered inert excipients of a vehicle bring about changes within the skin at the molecular level that promote barrier restoration and enhance innate immune defenses with therapeutic value to AD patients. Moreover, the vehicle control in randomized controlled trials (RCTs) increasingly displays significant efficacy. In light of this, we consider the implications of vehicle design in relation to AD pathophysiology and the role vehicles play as controls in RCTs of new drug treatments for this condition

    Multiplex Zymography Captures Stage-specific Activity Profiles of Cathepsins K, L, and S in Human Breast, Lung, and Cervical Cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cathepsins K, L, and S are cysteine proteases upregulated in cancer and proteolyze extracellular matrix to facilitate metastasis, but difficulty distinguishing specific cathepsin activity in complex tissue extracts confounds scientific studies and employing them for use in clinical diagnoses. Here, we have developed multiplex cathepsin zymography to profile cathepsins K, L, and S activity in 10 μg human breast, lung, and cervical tumors by exploiting unique electrophoretic mobility and renaturation properties.</p> <p>Methods</p> <p>Frozen breast, lung, and cervix cancer tissue lysates and normal organ tissue lysates from the same human patients were obtained (28 breast tissues, 23 lung tissues, and 23 cervix tissues), minced and homogenized prior to loading for cathepsin gelatin zymography to determine enzymatic activity.</p> <p>Results</p> <p>Cleared bands of cathepsin activity were identified and validated in tumor extracts and detected organ- and stage-specific differences in activity. Cathepsin K was unique compared to cathepsins L and S. It was significantly higher for all cancers even at the earliest stage tested (stage I for lung and cervix (n = 6, p < .05), and stage II for breast; n = 6, p < .0001). Interestingly, cervical and breast tumor cathepsin activity was highest at the earliest stage we tested, stages I and II, respectively, and then were significantly lower at the latest stages tested (III and IV, respectively) (n = 6, p < 0.01 and p < 0.05), but lung cathepsin activity increased from one stage to the next (n = 6, p < .05). Using cathepsin K as a diagnostic biomarker for breast cancer detected with multiplex zymography, yielded 100% sensitivity and specificity for 20 breast tissue samples tested (10 normal; 10 tumor) in part due to the consistent absence of cathepsin K in normal breast tissue across all patients.</p> <p>Conclusions</p> <p>To summarize, this sensitive assay provides quantitative outputs of cathepsins K, L, and S activities from mere micrograms of tissue and has potential use as a supplement to histological methods of clinical diagnoses of biopsied human tissue.</p

    Macrophage CD74 contributes to MIF-induced pulmonary inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MIF is a critical mediator of the host defense, and is involved in both acute and chronic responses in the lung. Neutralization of MIF reduces neutrophil accumulation into the lung in animal models. We hypothesized that MIF, in the alveolar space, promotes neutrophil accumulation via activation of the CD74 receptor on macrophages.</p> <p>Methods</p> <p>To determine whether macrophage CD74 surface expression contributes MIF-induced neutrophil accumulation, we instilled recombinant MIF (r-MIF) into the trachea of mice in the presence or absence of anti-CD74 antibody or the MIF specific inhibitor, ISO-1. Using macrophage culture, we examined the downstream pathways of MIF-induced activation that lead to neutrophil accumulation.</p> <p>Results</p> <p>Intratracheal instillation of r-MIF increased the number of neutrophils as well as the concentration of macrophage inflammatory protein 2 (MIP-2) and keratinocyte-derived chemokine (KC) in BAL fluids. CD74 was found to be expressed on the surface of alveolar macrophages, and MIF-induced MIP-2 accumulation was dependent on p44/p42 MAPK in macrophages. Anti-CD74 antibody inhibited MIF-induced p44/p42 MAPK phosphorylation and MIP-2 release by macrophages. Furthermore, we show that anti-CD74 antibody inhibits MIF-induced alveolar accumulation of MIP-2 (control IgG vs. CD74 Ab; 477.1 ± 136.7 vs. 242.2 ± 102.2 pg/ml, p < 0.05), KC (1796.2 ± 436.1 vs. 1138.2 ± 310.2 pg/ml, p < 0.05) and neutrophils (total number of neutrophils, 3.33 ± 0.93 × 10<sup>4 </sup>vs. 1.90 ± 0.61 × 10<sup>4</sup>, p < 0.05) in our mouse model.</p> <p>Conclusion</p> <p>MIF-induced neutrophil accumulation in the alveolar space results from interaction with CD74 expressed on the surface of alveolar macrophage cells. This interaction induces p44/p42 MAPK activation and chemokine release. The data suggest that MIF and its receptor, CD74, may be useful targets to reduce neutrophilic lung inflammation, and acute lung injury.</p

    Sequence-Dependent Fluorescence of Cyanine Dyes on Microarrays

    Get PDF
    Cy3 and Cy5 are among the most commonly used oligonucleotide labeling molecules. Studies of nucleic acid structure and dynamics use these dyes, and they are ubiquitous in microarray experiments. They are sensitive to their environment and have higher quantum yield when bound to DNA. The fluorescent intensity of terminal cyanine dyes is also known to be significantly dependent on the base sequence of the oligonucleotide. We have developed a very precise and high-throughput method to evaluate the sequence dependence of oligonucleotide labeling dyes using microarrays and have applied the method to Cy3 and Cy5. We used light-directed in-situ synthesis of terminally-labeled microarrays to determine the fluorescence intensity of each dye on all 1024 possible 5′-labeled 5-mers. Their intensity is sensitive to all five bases. Their fluorescence is higher with 5′ guanines, and adenines in subsequent positions. Cytosine suppresses fluorescence. Intensity falls by half over the range of all 5-mers for Cy3, and two-thirds for Cy5. Labeling with 5′-biotin-streptavidin-Cy3/-Cy5 gives a completely different sequence dependence and greatly reduces fluorescence compared with direct terminal labeling

    A Dimer of the Toll-Like Receptor 4 Cytoplasmic Domain Provides a Specific Scaffold for the Recruitment of Signalling Adaptor Proteins

    Get PDF
    The Toll-like receptor 4 (TLR4) is a class I transmembrane receptor expressed on the surface of immune system cells. TLR4 is activated by exposure to lipopolysaccharides derived from the outer membrane of Gram negative bacteria and forms part of the innate immune response in mammals. Like other class 1 receptors, TLR4 is activated by ligand induced dimerization, and recent studies suggest that this causes concerted conformational changes in the receptor leading to self association of the cytoplasmic Toll/Interleukin 1 receptor (TIR) signalling domain. This homodimerization event is proposed to provide a new scaffold that is able to bind downstream signalling adaptor proteins. TLR4 uses two different sets of adaptors; TRAM and TRIF, and Mal and MyD88. These adaptor pairs couple two distinct signalling pathways leading to the activation of interferon response factor 3 (IRF-3) and nuclear factor κB (NFκB) respectively. In this paper we have generated a structural model of the TLR4 TIR dimer and used molecular docking to probe for potential sites of interaction between the receptor homodimer and the adaptor molecules. Remarkably, both the Mal and TRAM adaptors are strongly predicted to bind at two symmetry-related sites at the homodimer interface. This model of TLR4 activation is supported by extensive functional studies involving site directed mutagenesis, inhibition by cell permeable peptides and stable protein phosphorylation of receptor and adaptor TIR domains. Our results also suggest a molecular mechanism for two recent findings, the caspase 1 dependence of Mal signalling and the protective effects conferred by the Mal polymorphism Ser180Leu

    Gβγ and the C Terminus of SNAP-25 Are Necessary for Long-Term Depression of Transmitter Release

    Get PDF
    Short-term presynaptic inhibition mediated by G protein-coupled receptors involves a direct interaction between G proteins and the vesicle release machinery. Recent studies implicate the C terminus of the vesicle-associated protein SNAP-25 as a molecular binding target of Gβγ that transiently reduces vesicular release. However, it is not known whether SNAP-25 is a target for molecular modifications expressing long-term changes in transmitter release probability.This study utilized two-photon laser scanning microscopy for real-time imaging of action potential-evoked [Ca(2+)] increases, in single Schaffer collateral presynaptic release sites in in vitro hippocampal slices, plus simultaneous recording of Schaffer collateral-evoked synaptic potentials. We used electroporation to infuse small peptides through CA3 cell bodies into presynaptic Schaffer collateral terminals to selectively study the presynaptic effect of scavenging the G-protein Gβγ. We demonstrate here that the C terminus of SNAP-25 is necessary for expression of LTD, but not long-term potentiation (LTP), of synaptic strength. Using type A botulinum toxin (BoNT/A) to enzymatically cleave the 9 amino acid C-terminus of SNAP-25 eliminated the ability of low frequency synaptic stimulation to induce LTD, but not LTP, even if release probability was restored to pre-BoNT/A levels by elevating extracellular [Ca(2+)]. Presynaptic electroporation infusion of the 14-amino acid C-terminus of SNAP-25 (Ct-SNAP-25), to scavenge Gβγ, reduced both the transient presynaptic inhibition produced by the group II metabotropic glutamate receptor stimulation, and LTD. Furthermore, presynaptic infusion of mSIRK, a second, structurally distinct Gβγ scavenging peptide, also blocked the induction of LTD. While Gβγ binds directly to and inhibit voltage-dependent Ca(2+) channels, imaging of presynaptic [Ca(2+)] with Mg-Green revealed that low-frequency stimulation only transiently reduced presynaptic Ca(2+) influx, an effect not altered by infusion of Ct-SNAP-25.The C-terminus of SNAP-25, which links synaptotagmin I to the SNARE complex, is a binding target for Gβγ necessary for both transient transmitter-mediated presynaptic inhibition, and the induction of presynaptic LTD

    Brain Derived Neurotrophic Factor (BDNF) Expression Is Regulated by MicroRNAs miR-26a and miR-26b Allele-Specific Binding

    Get PDF
    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays an essential role in neuronal development and plasticity. MicroRNA (miRNAs) are small non-coding RNAs of about 22-nucleotides in length regulating gene expression at post-transcriptional level. In this study we explore the role of miRNAs as post-transcriptional inhibitors of BDNF and the effect of 3′UTR sequence variations on miRNAs binding capacity. Using an in silico approach we identified a group of miRNAs putatively regulating BDNF expression and binding to BDNF 3′UTR polymorphic sequences. Luciferase assays demonstrated that these miRNAs (miR-26a1/2 and miR-26b) downregulates BDNF expression and that the presence of the variant alleles of two single nucleotide polymorphisms (rs11030100 and rs11030099) mapping in BDNF 3′UTR specifically abrogates miRNAs targeting. Furthermore we found a high linkage disequilibrium rate between rs11030100, rs11030099 and the non-synonymous coding variant rs6265 (Val66Met), which modulates BDNF mRNA localization and protein intracellular trafficking. Such observation led to hypothesize that miR-26s mediated regulation could extend to rs6265 leading to an allelic imbalance with potentially functional effects, such as peptide's localization and activity-dependent secretion. Since rs6265 has been previously implicated in various neuropsychiatric disorders, we evaluated the distribution of rs11030100, rs11030099 and rs6265 both in a control and schizophrenic group, but no significant difference in allele frequencies emerged. In conclusion, in the present study we identified two novel miRNAs regulating BDNF expression and the first BDNF 3′UTR functional variants altering miRNAs-BDNF binding

    Dysregulation of Macrophage-Secreted Cathepsin B Contributes to HIV-1-Linked Neuronal Apoptosis

    Get PDF
    Chronic HIV infection leads to the development of cognitive impairments, designated as HIV-associated neurocognitive disorders (HAND). The secretion of soluble neurotoxic factors by HIV-infected macrophages plays a central role in the neuronal dysfunction and cell death associated with HAND. One potentially neurotoxic protein secreted by HIV-1 infected macrophages is cathepsin B. To explore the potential role of cathepsin B in neuronal cell death after HIV infection, we cultured HIV-1ADA infected human monocyte-derived macrophages (MDM) and assayed them for expression and activity of cathepsin B and its inhibitors, cystatins B and C. The neurotoxic activity of the secreted cathepsin B was determined by incubating cells from the neuronal cell line SK-N-SH with MDM conditioned media (MCM) from HIV-1 infected cultures. We found that HIV-1 infected MDM secreted significantly higher levels of cathepsin B than did uninfected cells. Moreover, the activity of secreted cathepsin B was significantly increased in HIV-infected MDM at the peak of viral production. Incubation of neuronal cells with supernatants from HIV-infected MDM resulted in a significant increase in the numbers of apoptotic neurons, and this increase was reversed by the addition of either the cathepsin B inhibitor CA-074 or a monoclonal antibody to cathepsin B. In situ proximity ligation assays indicated that the increased neurotoxic activity of the cathepsin B secreted by HIV-infected MDM resulted from decreased interactions between the enzyme and its inhibitors, cystatins B and C. Furthermore, preliminary in vivo studies of human post-mortem brain tissue suggested an upregulation of cathepsin B immunoreactivity in the hippocampus and basal ganglia in individuals with HAND. Our results demonstrate that HIV-1 infection upregulates cathepsin B in macrophages, increases cathepsin B activity, and reduces cystatin-cathepsin interactions, contributing to neuronal apoptosis. These findings provide new evidence for the role of cathepsin B in neuronal cell death induced by HIV-infected macrophages
    corecore