60,478 research outputs found
Orthogonal learning particle swarm optimization
Particle swarm optimization (PSO) relies on its
learning strategy to guide its search direction. Traditionally,
each particle utilizes its historical best experience and its neighborhood’s
best experience through linear summation. Such a
learning strategy is easy to use, but is inefficient when searching
in complex problem spaces. Hence, designing learning strategies
that can utilize previous search information (experience) more
efficiently has become one of the most salient and active PSO
research topics. In this paper, we proposes an orthogonal learning
(OL) strategy for PSO to discover more useful information that
lies in the above two experiences via orthogonal experimental
design. We name this PSO as orthogonal learning particle swarm
optimization (OLPSO). The OL strategy can guide particles to
fly in better directions by constructing a much promising and
efficient exemplar. The OL strategy can be applied to PSO with
any topological structure. In this paper, it is applied to both global
and local versions of PSO, yielding the OLPSO-G and OLPSOL
algorithms, respectively. This new learning strategy and the
new algorithms are tested on a set of 16 benchmark functions, and
are compared with other PSO algorithms and some state of the
art evolutionary algorithms. The experimental results illustrate
the effectiveness and efficiency of the proposed learning strategy
and algorithms. The comparisons show that OLPSO significantly
improves the performance of PSO, offering faster global convergence,
higher solution quality, and stronger robustness
An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks
Maximizing the lifetime of wireless sensor networks (WSNs) is a challenging problem. Although some methods exist to address the problem in homogeneous WSNs, research on this problem in heterogeneous WSNs have progressed at a slow pace. Inspired by the promising performance of ant colony optimization (ACO) to solve combinatorial problems, this paper proposes an ACO-based approach that can maximize the lifetime of heterogeneous WSNs. The methodology is based on finding the maximum number of disjoint connected covers that satisfy both sensing coverage and network connectivity. A construction graph is designed with each vertex denoting the assignment of a device in a subset. Based on pheromone and heuristic information, the ants seek an optimal path on the construction graph to maximize the number of connected covers. The pheromone serves as a metaphor for the search experiences in building connected covers. The heuristic information is used to reflect the desirability of device assignments. A local search procedure is designed to further improve the search efficiency. The proposed approach has been applied to a variety of heterogeneous WSNs. The results show that the approach is effective and efficient in finding high-quality solutions for maximizing the lifetime of heterogeneous WSNs
Mixed integer nonlinear programming for Joint Coordination of Plug-in Electrical Vehicles Charging and Smart Grid Operations
The problem of joint coordination of plug-in electric vehicles (PEVs)
charging and grid power control is to minimize both PEVs charging cost and
energy generation cost while meeting both residential and PEVs' power demands
and suppressing the potential impact of PEVs integration. A bang-bang PEV
charging strategy is adopted to exploit its simple online implementation, which
requires computation of a mixed integer nonlinear programming problem (MINP) in
binary variables of the PEV charging strategy and continuous variables of the
grid voltages. A new solver for this MINP is proposed. Its efficiency is shown
by numerical simulations.Comment: arXiv admin note: substantial text overlap with arXiv:1802.0445
Propagation of solitary waves through signicantly curved shallow water channels
Propagation of solitary waves in curved shallow water channels of constant depth and width is investigated by carrying out numerical simulations based on the generalized weakly nonlinear and weakly dispersive Boussinesq model. The objective is to investigate the effects of channel width and bending sharpness on the transmission and reflection of long waves propagating through significantly curved channels. Our
numerical results show that, when travelling through narrow channel bends including both smooth and sharp-cornered 90°-bends, a solitary wave is transmitted almost completely with little reflection and scattering. For wide channel bends, we find that, if the bend is rounded and smooth, a solitary wave is still fully transmitted with little backward reflection, but the transmitted wave will no longer preserve the shape of the original solitary wave but will disintegrate into several smaller waves. For solitary waves travelling through wide sharp-cornered 90°-bends, wave reflection is seen to be very significant, and the wider the channel bend, the stronger the reflected wave amplitude. Our numerical results for waves in sharp-cornered 90°-bends revealed a similarity relationship which indicates that the ratios of the transmitted and reflected wave amplitude, excess mass and energy to the original wave amplitude, mass and energy all depend on one single dimensionless parameter, namely the ratio of the channel width b to the effective wavelength [lambda][sub]e. Quantitative results for predicting wave transmission and reflection based on b/[lambda][sub]e are presented
Anti-lecture Hall Compositions and Overpartitions
We show that the number of anti-lecture hall compositions of n with the first
entry not exceeding k-2 equals the number of overpartitions of n with
non-overlined parts not congruent to modulo k. This identity can be
considered as a refined version of the anti-lecture hall theorem of Corteel and
Savage. To prove this result, we find two Rogers-Ramanujan type identities for
overpartition which are analogous to the Rogers-Ramanjan type identities due to
Andrews. When k is odd, we give an alternative proof by using a generalized
Rogers-Ramanujan identity due to Andrews, a bijection of Corteel and Savage and
a refined version of a bijection also due to Corteel and Savage.Comment: 16 page
Single crystal growth and physical properties of SrFe(AsP)
We report a crystal growth and physical properties of
SrFe(AsP). The single crystals for various s were
grown by a self flux method. For , reaches the maximum value of
30\,K and the electrical resistivity () shows -linear dependence.
As increases, decreases and () changes to -behavior,
indicating a standard Fermi liquid. These results suggest that a magnetic
quantum critical point exists around .Comment: 4 pages, 4 figures, accepted to Supplemental issue of the Journal of
Physical Society of Japan (JPSJ
- …