271 research outputs found

    Uniaxial and Mixed Orientations of Poly(ethylene oxide) in Nanoporous Alumina Studied by X-ray Pole Figure Analysis

    Get PDF
    The orientation of polymers under confinement is a basic, yet not fully understood phenomenon. In this work, the texture of poly(ethylene oxide) (PEO) infiltrated in nanoporous anodic alumina oxide (AAO) templates was investigated by X-ray pole figures. The influence of geometry and crystallization conditions, such as pore diameter, aspect ratio, and cooling rates, was systematically examined. All the samples exhibited a single, volume-dependent crystallization temperature (Tc) at temperatures much lower than that exhibited by bulk PEO, indicating “clean” microdomains without detectable heterogeneous nucleation. An “orientation diagram” was established to account for the experimental observations. Under very high cooling rates (quenching), crystallization of PEO within AAO was nucleation-controlled, adopting a random distribution of crystallites. Under low cooling rates, growth kinetics played a decisive role on the crystal orientation. A relatively faster cooling rate (10 °C/min) and/or smaller pores lead to the * ║ pore axis (n⃗) mode (uniaxial orientation). When the cooling rate was lower (1 °C/min), and/or the pores were larger, a mixed orientation, with a coexistence of * ║ n⃗ and * ║ n⃗ , was observed. The results favor the kinetic model where the fastest growth direction tends to align parallel to the pore axis.This work is supported by the National Natural Science Foundation of China (NSFC, 21873109, 51820105005, 21274156). G. L. is grateful to the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2015026). G. L., D. W., and A. J. M. also acknowledge European funding by the RISE BIODEST project (H2020-MSCA-RISE-2017-778092). The authors thank Dr. Zhongkai Yang for assistance with pole figure measurement

    Therapeutic hypothermia can cause non-infective C-reactive protein elevating

    Get PDF
    ObjectiveTo analyze the relationship between therapeutic hypothermia (TH) and whole blood high-sensitivity C-reactive protein (hs-CRP) in neonates with hypoxic-ischemic encephalopathy (HIE).MethodRetrospective analysis was made on the clinical data of hospitalized infants diagnosed with asphyxia in our neonatal intensive care unit from January 2014 to June 2021. According to whether TH was performed, they were divided into two groups, the control group (missed the time in other hospitals and did not receive TH) and the treatment group (TH group). In their first ten days, analysis was made on the hs-CRP, white blood cell (WBC) count, neutrophil percentage, platelet count (PLT), and brain MRI. The correlation analysis was carried out based on the severity of brain injury displayed by the brain MRI and the time of hs-CRP elevation to summarize the relationship between TH and the time of hs-CRP elevation and the severity of HIE.Results83 infants were included, 28 in the control group and 55 in the TH group. After birth, 33 infants (60.0%) in the TH group and 2 patients (7.1%) in the control group had elevated hs-CRP, which was statistically significant (P < 0.05). The time window for CRP elevation after TH was 72–96 h after the end of treatment; The results of the brain MRI showed 23 in the TH group and 11in the control group with moderate and severe HIE. 21 infants (all in the TH group) had elevated hs-CRP. MRI showed that the number of infants with mild injury or regular infants whose hs-CRP raised in the TH group was 12, and the rate of hs-CRP elevation was 37.5%; in the control group, the rate was 11.8%. The difference was significant. TH can decrease PLT and WBC, but no significance in the two groups. Blood and sputum cultures were negative in all infants, and there were no signs of infection.ConclusionsTH can increase the blood hs-CRP of HIE neonates, and the probability of its occurrence is related to the severity of HIE. The heavier the HIE, the higher the risk of hs-CRP elevation after TH; The hs-CRP elevation has little to do with infection, and it doesn't recommend using antibiotics actively

    Transforming growth factor-ÎČ1 disrupts angiogenesis during the follicular–luteal transition through the Smad–serpin family E member 1 (SERPINE1)/serpin family B member 5 (SERPINB5) signalling pathway in the cow

    Get PDF
    Intense angiogenesis is critical for the development of the corpus luteum and is tightly regulated by numerous factors. However, the exact role transforming growth factor beta 1 (TGFB1) plays during this follicular-luteal transition remains unclear. This study hypothesized that TGFB1 acting through TGFBR1 and Smad2/3 signaling would suppress angiogenesis during the follicular-luteal transition. Using a serum-free luteinizing follicular angiogenesis culture system, TGFB1 (1 and 10ng.mL-1) markedly disrupted the formation of capillary-like structures, reducing endothelial cell network area and number of branch points (P[less than]0.001). Furthermore, TGFB1 activated canonical Smad signaling and inhibited endothelial nitric oxide synthase (NOS3) mRNA expression, but up-regulated latent TGF-beta binding protein, type I TGFB receptor (TGFBR1), SERPINE1 and SERPINB5 mRNA expression. TGFBR1 inhibitor, SB431542, reversed the SERPINE1 and SERPINB5 up-regulation by TGFB1. Additionally, TGFB1 reduced progesterone synthesis through decreasing STAR, CYP11A1 and HSD3B1 expression. These results show that TGFB1 regulated NOS3, SERPINE1, and SERPINB5 expression via TGFBR1 and Smad2/3 signaling and could be the mechanism by which TGFB1 suppresses endothelial networks. Thereby, TGFB1 may provide a critical homeostatic control of angiogenesis during the follicular-luteal transition. Our findings reveal the molecular mechanisms underlying the actions of TGFB1 in early luteinization which may lead to novel therapeutic strategies to reverse luteal inadequacy

    Multi-objective optimization of PCM-fin structure for staggered Li-ion battery packs

    Get PDF
    Endurance capability is a key indicator to evaluate the performance of electric vehicles. Improving the energy density of battery packs in a limited space while ensuring the safety of the vehicle is one of the currently used technological solutions. Accordingly, a small space and high energy density battery arrangement scheme is proposed in this paper. The comprehensive performance of two battery packs based on the same volume and different space arrangements is compared. Further, based on the same thermal management system (PCM-fin system), the thermal performance of staggered battery packs with high energy density is numerically simulated with different fin structures, and the optimal fin structure parameters for staggered battery packs at a 3C discharge rate are determined using the entropy weight-TOPSIS method. The result reveals that increasing the contact thickness between the fin and the battery (X) can reduce the maximum temperature, but weaken temperature homogeneity. Moreover, the change of fin width (A) has no significant effect on the heat dissipation performance of the battery pack. Entropy weight-TOPSIS method objectively assigns weights to both maximum temperature (Tmax) and temperature difference (DT) and determines the optimal solution for the cooling system fin parameters. It is found that when X = 0:67 mm, A = 0:6 mm, the staggered battery pack holds the best comprehensive performance

    The progress of research on the application of redox nanomaterials in disease therapy

    Get PDF
    Redox imbalance can trigger cell dysfunction and damage and plays a vital role in the origin and progression of many diseases. Maintaining the balance between oxidants and antioxidants in vivo is a complicated and arduous task, leading to ongoing research into the construction of redox nanomaterials. Nanodrug platforms with redox characteristics can not only reduce the adverse effects of oxidative stress on tissues by removing excess oxidants from the body but also have multienzyme-like activity, which can play a cytotoxic role in tumor tissues through the catalytic oxidation of their substrates to produce harmful reactive oxygen species such as hydroxyl radicals. In this review, various redox nanomaterials currently used in disease therapy are discussed, emphasizing the treatment methods and their applications in tumors and other human tissues. Finally, the limitations of the current clinical application of redox nanomaterials are considered

    Epidemiological and genomic analyses of human isolates of Streptococcus suis between 2005 and 2021 in Shenzhen, China

    Get PDF
    Streptococcus suis (S. suis) is an important food-borne zoonotic pathogen that causes swine streptococcosis, which threatens human health and brings economic loss to the swine industry. Three-quarters of human S. suis infections are caused by serotype 2. A retrospective analysis of human S. suis cases in Shenzhen, a megacity in China, with high pork consumption, between 2005 and 2021 was conducted to understand its genomic epidemiology, pathogen virulence, and drug resistance characteristics. The epidemiological investigation showed that human cases of S. suis in Shenzhen were mainly associated with people who had been in close contact with raw pork or other swine products. Whole-genome sequence analysis showed that 33 human isolates in Shenzhen were dominated by serotype 2 (75.76%), followed by serotype 14 (24.24%), and the most prevalent sequence types (STs) were ST7 (48.48%) and ST1 (39.40%). ST242 (9.09%) and ST25 (3.03%), which were rarely reported, were also found. Phylogenetic analysis showed that the Shenzhen human isolates had close genetic relatedness to isolates from Guangxi (China), Sichuan (China), and Vietnam. We found a new 82 KB pathogenicity island (PAI) in the serotype 2 isolate that may play a role in sepsis. Similarly, a serotype 14 isolate, containing 78 KB PAI, was isolated from a patient presenting with streptococcal toxic shock syndrome (STSLS) who subsequently died. Multi-drug resistance (MDR) was high in human isolates of S. suis from Shenzhen. Most human isolates were resistant to tetracycline, streptomycin, erythromycin, and clindamycin, and 13 isolates had intermediate resistance to penicillin. In conclusion, swine importation from Guangxi, Sichuan, and Vietnam should be more closely monitored, and the use of antibiotics limited to reduce the potential for antimicrobial resistance (AMR)

    The GECAM Real-Time Burst Alert System

    Full text link
    Gravitational Wave High-energy Electromagnetic Counterpart All-sky Monitor (GECAM), consisting of two micro-satellites, is designed to detect gamma-ray bursts associated with gravitational-wave events. Here, we introduce the real-time burst alert system of GECAM, with the adoption of the BeiDou-3 short message communication service. We present the post-trigger operations, the detailed ground-based analysis, and the performance of the system. In the first year of the in-flight operation, GECAM was triggered by 42 GRBs. GECAM real-time burst alert system has the ability to distribute the alert within ∌\sim1 minute after being triggered, which enables timely follow-up observations.Comment: 17 pages, 10 figures; Accepted for publication in RA

    miR-205-5p Mediated Downregulation of PTEN Contributes to Cisplatin Resistance in C13K Human Ovarian Cancer Cells

    Get PDF
    Cisplatin resistance is a major cause of treatment failure in advanced ovarian cancer. The limited evidence shows the paradoxical regulation of miR-205 on chemotherapy resistance in cancer. Herein, we found that miR-205-5p was enormously increased in cisplatin-resistant C13K ovarian cancer cells compared with its cisplatin-sensitive OV2008 parental cells using miRNA microarrays, which was further verified by quantitative PCR. Furthermore, we confirmed that inhibition of miR-205-5p upregulated PTEN and subsequently attenuated its downstream target p-AKT, which inversed C13K cells from cisplatin resistance to sensitivity. Our data suggest that miR-205-5p contributes to cisplatin resistance in C13K ovarian cancer cells may via targeting PTEN/AKT pathway

    Case Report: Cancer spectrum and genetic characteristics of a de novo germline POLD1 p.L606M variant-induced polyposis syndrome

    Get PDF
    Germline variations in the DNA polymerase genes, POLE and POLD1, can lead to a hereditary cancer syndrome that is characterized by frequent gastrointestinal polyposis and multiple primary malignant tumors. However, because of its rare occurrence, this disorder has not been extensively studied. In this report, we present the case of a 22-year-old female patient who had been diagnosed with gastrointestinal polyposis, breast fibroadenoma, multiple primary colorectal cancers, and glioblastoma (grade IV) within a span of 4 years. Next-generation sequencing analysis revealed a germline variant in POLD1 (c.1816C>A; p.L606M). In silico analysis using protein functional predicting software, including SIFT, Polyphen, GERP++, and CADD, further confirmed the pathogenicity of POLD1 p.L606M (classified as ACMG grade Class 4). In line with polymerase deficiency, both rectal cancer and glioblastoma tissues exhibited a high tumor mutation burden, with 16.9 muts/Mb and 347.1 muts/Mb, respectively. Interestingly, the patient has no family history of cancer, and gene examination of both parents confirms that this is a de novo germline variant. Therefore, molecular screening for POLD1 may be necessary for patients with such a cancer spectrum, regardless of their family history

    Astragalus Granule Prevents Ca 2+

    Get PDF
    Background. Astragalus was broadly used for treating heart failure (HF) and arrhythmias in East Asia for thousands of years. Astragalus granule (AG), extracted from Astragalus, shows beneficial effect on the treatment of HF in clinical research. We hypothesized that administration of AG prevents the remodeling of L-type Ca2+ current (ICa-L) in HF mice by the downregulation of Ca2+/calmodulin-dependent protein kinase II (CaMKII). Methods. HF mice were induced by thoracic aortic constriction (TAC). After 4 weeks of AG treatment, cardiac function and QT interval were evaluated. Single cardiac ventricular myocyte was then isolated and whole-cell patch clamp was used to record action potential (AP) and ICa-L. The expressions of L-type calcium channel alpha 1C subunit (Cav1.2), CaMKII, and phosphorylated protein kinase A (p-PKA) were examined by western blot. Results. The failing heart manifested distinct electrical remodeling including prolonged repolarization time and altered ICa-L kinetics. AG treatment attenuated this electrical remodeling, supported by AG-related shortened repolarization time, decreased peak ICa-L, accelerated ICa-L inactivation, and positive frequency-dependent ICa-L facilitation. In addition, AG treatment suppressed the overexpression of CaMKII, but not p-PKA, in the failing heart. Conclusion. AG treatment protected the failing heart against electrical remodeling and ICa-L remodeling by downregulating CaMKII
    • 

    corecore