69 research outputs found

    PO-304 Caffeine Supplementation Altered Metabolic Profiles in High-intensity Interval Training

    Get PDF
    Objective Caffeine supplementation is a commonly used nutritional practice. Exogenous metabolites from caffeine, such as paraxanthine, theobromine and theophylline, are eventually excreted through urine. Yet, it is less clear whether caffeine would induce endogenous metabolites altered during exercise. Urine metabolomics is non-invasive method, which mainly focus on alterations of endogenous metabolic profiles caused by diseases, drugs, and lifestyle and nutritional interventions as well. Therefore, the purpose of the present study was to examine the effects of supplementation with caffeine in a well-designed high intensity interval training (HITT). We identified significant alterations in urinary metabolite levels and revealed key metabolic pathways involved in caffeine supplementation in HITT. Methods We performed a randomized, double-blind, placebo- controlled crossover study. Twelve women basketball players (age:19.12 ± 2.64 years, mass: 174.73 ± 5.18 cm, height: 62 ± 5.09 kg, with 8.50±2.11 years training period for basketball) were randomized to placebo (PLA) or caffeine (CAF) with dosage of 3mg on the basis of body weight (kg) 45min before a field HITT test. The test was repeated after three days when players were crossed over to the alternate test. The test began with a 30 min warmup, followed by a high intensity intermittent exercise trail with incremental load for about 25min, and a cool-down. Players are familiar with the test program which included 55 sets of dribble shuttle-run, pass, shoot, and rebound with basketball with a distance of 1540m (55 × 28m), the interval between two sets was gradually reduced. Performance (completed time), heart rates immediate (HR0min) and 1 min (HR1min) after test, blood lactate (BLa), proteinuria and ratings of perceived exertion (RPE) were collected during each protocol. Urine samples were obtained before and 1 h after of the test. 1H-NMR spectra (Bruker AVANCE III HD 600MHz) were obtained and then processed by NMR spectra (MestReNova 9.0). The binning values of NMR spectra are imported into MATLAB, and the peaks are aligned with the icoshift algorithm. Then concentrations of the aligned metabolites were calculated by converting the integral area of proton signals with that of the TSP. Pattern recognition was performed to the processed NMR data, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Characteristic metabolites were identified that contribute most to the metabolic pattern between groups according to the OPLS-DA models. Finally, we analyzed the metabolic pathway by importing characteristic metabolites with concentrations into the Enrichment Analysis (MetaboAnalysis 3.0) to determine the metabolic pathways with the greatest disturbance related to caffeine during exercise. Moreover, the main effects of exercise, caffeine and the interaction between exercise and caffeine were determined by Repeated measure GLM analysis (Spss 22.0). Results (1) Compared with PLA, CAF had no significant difference in the completed time (25.9 min vs. 26.8 min). Repeated measured analysis showed that there was significant overall time effect on the routine training monitoring parameters, while no statistically group differences in HR0min, HR1min, BLa (199.02±21.36 vs.189.00±22.38 bpm; 148.02±12.60 vs.148.02±20.34 bpm, and 8.89±2.23 vs. 9.52±2.91 mmol/L, respectively). For the qualitative indexes, the positive rate of urine ketone bodies was increased, while RPE did not changed. (2) We identified 32 metabolites in urine sample. PCA showed distinct differentiation of metabolic patterns between each two groups in the four groups (PLAbefore, PLApost, CAFbefore, CAFafter). By using OPLS-DA, we found that the urine metabolic profiles were differences in between caffeine supplementation group and placebo group during the test. OPLS-DA revealed the identified metabolites of exercise and caffeine respectively, among them, lactate, butyric acid, isobutyric acid, 3-hydroxybutyric acid and pyruvic acid could be used as metabolic biomarkers in the HITT response. Supplementation of caffeine increased the production of fat metabolites in urine compared to the PLA. Enrichment analysis showed that the disturbed metabolic pathways shared by PLA and CAF were purine metabolism, glycolysis, insulin signal transduction, galactose metabolism, gluconeogenesis, glucose-alanine cycle, sphingolipid metabolism, alanine metabolism and citric acid cycle. Yet, when compared to the PLA, CAF enhanced fat metabolism and increased pyruvate metabolism, cysteine metabolism and mitochondrial electron transport. These results suggest that caffeine could promote fatty acid metabolism and amino acid metabolism to improve aerobic metabolism and to reduce oxidative stress, and thus promote exercise capacity. (3) Covariance analysis showed that there were significant individual-specific effects of caffeine supplementation. Conclusions Caffeine supplementation during HITT promoted the fat metabolism, and upregulated the TCA, pyruvate metabolism and mitochondrial electron transfer. It is suggested that caffeine could, to some extent, promote energy supply shift from anaerobic metabolic to an aerobic manner, and the enhancement of fat oxidation would be beneficial to glycogen storage for intensively long-duration exercise. Moreover, there are obvious individual differences in caffeine response on sports

    Removal of Hsf4 leads to cataract development in mice through down-regulation of γS-crystallin and Bfsp expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heat-shock transcription factor 4 (HSF4) mutations are associated with autosomal dominant lamellar cataract and Marner cataract. Disruptions of the <it>Hsf4 </it>gene cause lens defects in mice, indicating a requirement for HSF4 in fiber cell differentiation during lens development. However, neither the relationship between HSF4 and crystallins nor the detailed mechanism of maintenance of lens transparency by HSF4 is fully understood.</p> <p>Results</p> <p>In an attempt to determine how the underlying biomedical and physiological mechanisms resulting from loss of HSF4 contribute to cataract formation, we generated an <it>Hsf4 </it>knockout mouse model. We showed that the <it>Hsf4 </it>knockout mouse (<it>Hsf4</it><sup>-/-</sup>) partially mimics the human cataract caused by HSF4 mutations. Q-PCR analysis revealed down-regulation of several cataract-relevant genes, including <it>γS-crystallin (Crygs) </it>and lens-specific beaded filament proteins 1 and 2 (<it>Bfsp1 </it>and <it>Bfsp2</it>), in the lens of the <it>Hsf4</it><sup>-/- </sup>mouse. Transcription activity analysis using the dual-luciferase system suggested that these cataract-relevant genes are the direct downstream targets of HSF4. The effect of HSF4 on <it>γS-crystallin </it>is exemplified by the cataractogenesis seen in the <it>Hsf4</it><sup>-/-</sup>,<it>rncat </it>intercross. The 2D electrophoretic analysis of whole-lens lysates revealed a different expression pattern in 8-week-old <it>Hsf4</it><sup>-/- </sup>mice compared with their wild-type counterparts, including the loss of some αA-crystallin modifications and reduced expression of γ-crystallin proteins.</p> <p>Conclusion</p> <p>Our results indicate that HSF4 is sufficiently important to lens development and disruption of the <it>Hsf4 </it>gene leads to cataracts via at least three pathways: 1) down-regulation of <it>γ-crystallin</it>, particularly <it>γS-crystallin</it>; 2) decreased lens beaded filament expression; and 3) loss of post-translational modification of αA-crystallin.</p

    Cooperativity among Short Amyloid Stretches in Long Amyloidogenic Sequences

    Get PDF
    Amyloid fibrillar aggregates of polypeptides are associated with many neurodegenerative diseases. Short peptide segments in protein sequences may trigger aggregation. Identifying these stretches and examining their behavior in longer protein segments is critical for understanding these diseases and obtaining potential therapies. In this study, we combined machine learning and structure-based energy evaluation to examine and predict amyloidogenic segments. Our feature selection method discovered that windows consisting of long amino acid segments of ∼30 residues, instead of the commonly used short hexapeptides, provided the highest accuracy. Weighted contributions of an amino acid at each position in a 27 residue window revealed three cooperative regions of short stretch, resemble the β-strand-turn-β-strand motif in A-βpeptide amyloid and β-solenoid structure of HET-s(218–289) prion (C). Using an in-house energy evaluation algorithm, the interaction energy between two short stretches in long segment is computed and incorporated as an additional feature. The algorithm successfully predicted and classified amyloid segments with an overall accuracy of 75%. Our study revealed that genome-wide amyloid segments are not only dependent on short high propensity stretches, but also on nearby residues

    Analysis of Seepage Characteristics of a Foundation Pit with Horizontal Waterproof Curtain in Highly Permeable Strata

    No full text
    At present, jet-grouted horizontal waterproof curtain reinforcement has become an essential method for deep foundation pit groundwater control. However, there is still a lack of an effective theoretical calculation method for horizontal waterproof curtain reinforcement, and there is little research on the seepage laws of foundation pits under different horizontal waterproof curtain conditions. Based on Darcy’s seepage theory, theoretical analysis models of deep foundation pit seepage were established considering the effect of a horizontal curtain in a highly permeable formation. Through the established models, the calculation method of the water inflow and the water pressure under the condition of a horizontal curtain was derived. Then through indoor tests, the reliability of the theoretical calculation method was verified. Furthermore, the established theoretical calculation method is used to analyze the influence of various factors on the water inflow and the water pressure, such as the ratio of hydraulic conductivity of the horizontal curtain to surrounding soil, thickness, and reinforcement position of the horizontal curtain. It is found that the hydraulic conductivity ratio has the most significant influence on the seepage characteristics of the foundation pit. Finally, the design method was applied to an example of the horizontal waterproof curtain of the foundation pit, which is located at Juyuanzhou Station in Fuzhou (China). The water inflow per unit area is 0.36 m3/d in the foundation pit, and this implies that the design method of the horizontal waterproof curtain applied for the excavation case is good and meets the requirements of design and safety

    Road Performance Evaluation of Unburned Coal Gangue in Cold Regions

    No full text
    At present, the cumulative storage of coal gangue in China exceeds 7 billion tons, covering an area of approximately 70 km2. The engineering application of unburned coal gangue is mainly utilized as concrete aggregate or cement production after the overfire process. However, it is prone to environmental pollution and has limited consumption. Using unburned coal gangue as roadbed filling not only alleviates the difficulty of land acquisition and soil collection for road constructions in mining areas, but also consumes a large amount of accumulated unburned coal gangue. This study conducts research on the road performance of unburned coal gangue. A series of laboratory tests have been performed to determine the physical and chemical properties of the unburned coal gangue and its performance as a filling material in cold regions. The influence of compaction effort, clay content, and number of freezing–thawing cycles on the mechanical performance of the unburned coal gangue was investigated. The typical unburned coal gangue in the Heilongjiang region is mainly composed of SiO2, Al2O3, and Fe2O3, which accounts for approximately 91% of the total mass. The unburned coal gangue meets the minimum CBR requirement of 8% after 7 freezing–thawing cycles. This study helps fully and reasonably utilize typical unburned coal gangue in the local area, providing technical support for achieving the overall goal of “green development, conservation and intensification, and low-carbon environmental protection”

    Identifying Protein Complexes Using Hybrid Properties

    No full text
    corecore