192 research outputs found

    Monte Carlo study of the Widom-Rowlinson fluid using cluster methods

    Full text link
    The Widom-Rowlinson model of a fluid mixture is studied using a new cluster algorithm that is a generalization of the invaded cluster algorithm previously applied to Potts models. Our estimate of the critical exponents for the two-component fluid are consistent with the Ising universality class in two and three dimensions. We also present results for the three-component fluid.Comment: 13 pages RevTex and 2 Postscript figure

    Knowledge politics and new converging technologies: a social epistemological perspective

    Get PDF
    The “new converging technologies” refers to the prospect of advancing the human condition by the integrated study and application of nanotechnology, biotechnology, information technology and the cognitive sciences - or “NBIC”. In recent years, it has loomed large, albeit with somewhat different emphases, in national science policy agendas throughout the world. This article considers the political and intellectual sources - both historical and contemporary - of the converging technologies agenda. Underlying it is a fluid conception of humanity that is captured by the ethically challenging notion of “enhancing evolution”

    Statistical Analyses Support Power Law Distributions Found in Neuronal Avalanches

    Get PDF
    The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to −1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling (“finite size” effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to −1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex

    Frustrated hierarchical synchronization and emergent complexity in the human connectome network

    Get PDF
    The spontaneous emergence of coherent behavior through synchronization plays a key role in neural function, and its anomalies often lie at the basis of pathologies. Here we employ a parsimonious (mesoscopic) approach to study analytically and computationally the synchronization (Kuramoto) dynamics on the actual human-brain connectome network. We elucidate the existence of a so-far-uncovered intermediate phase, placed between the standard synchronous and asynchronous phases, i.e. between order and disorder. This novel phase stems from the hierarchical modular organization of the connectome. Where one would expect a hierarchical synchronization process, we show that the interplay between structural bottlenecks and quenched intrinsic frequency heterogeneities at many different scales, gives rise to frustrated synchronization, metastability, and chimera-like states, resulting in a very rich and complex phenomenology. We uncover the origin of the dynamic freezing behind these features by using spectral graph theory and discuss how the emerging complex synchronization patterns relate to the need for the brain to access –in a robust though flexible way– a large variety of functional attractors and dynamical repertoires without ad hoc fine-tuning to a critical pointWe acknowledge financial support from J. de Andalucía, grant P09-FQM-4682 and we thank O. Sporns for providing us access to the human connectome data

    Association of Methylentetraydrofolate Reductase (MTHFR) 677 C > T gene polymorphism and homocysteine levels in psoriasis vulgaris patients from Malaysia: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The methylenetetrahydrofolate reductase (MTHFR) enzyme catalyzes the reduction of 5, 10-methylenetetrahydrofolate to 5-methyltetrahydrofolate and methyl donors. The methyl donors are required for the conversion of homocysteine to methionine. Mutation of MTHFR 677 C > T disrupts its thermostability therefore leads to defective enzyme activities and dysregulation of homocysteine levels.</p> <p>Methods</p> <p>This case-control study (n = 367) was conducted to investigate the correlation of the MTHFR gene polymorphism [NM_005957] and psoriasis vulgaris amongst the Malaysian population. Overnight fasting blood samples were collected from a subgroup of consented psoriasis vulgaris patients and matched controls (n = 84) for the quantification of homocysteine, vitamin B<sub>12 </sub>and folic acid levels.</p> <p>Results</p> <p>There was no significant increase of the MTHFR 677 C > T mutation in patients with psoriasis vulgaris compared with controls (<it>χ</it><sup>2 </sup>= 0.733, p = 0.392). No significant association between homocysteine levels and MTHFR gene polymorphism in cases and controls were observed (F = 0.91, df = 3, 80, p = 0.44). However, homocysteine levels in cases were negatively correlated with vitamin B<sub>12 </sub>(r = -0.173) and folic acid (r = -0.345) levels. Vitamin B<sub>12 </sub>and folic acid levels in cases were also negatively correlated (r = -0.164).</p> <p>Conclusions</p> <p>Our results indicate that there was no significant association between the MTHFR gene polymorphism and psoriasis vulgaris in the Malaysian population. There was no significant increase of the plasma homocysteine level in the psoriasis patients compared to the controls.</p

    Frequency of Chlamydia trachomatis infection in cervical intraepithelial lesions and the status of cytological p16/Ki-67 dual-staining

    Get PDF
    Background: Chlamydia trachomatis (Ct) is not a disease subject to mandatory reporting in Brazil, and the prevalence rate of this genital infection varies according to the region in which studies are conducted, as well as by the detection technique employed. Ct has been associated with persistence of Human papillomavirus (HPV) infection and the facilitation of cervical carcinoma development. We evaluated the Chlamydia trachomatis infection and its association with cytology, p16/Ki-67 dual-stained cytology and cervical intraepithelial lesions status in a screening cohort in Brazil. Methods: This was a cross-sectional study of 1481 cervical samples from asymptomatic women aged 18 to 64. Samples were collected for liquid-based cytology and Ct detection by polymerase chain reaction. p16/Ki-67 double staining was performed on samples with abnormal cytology. Statistical analysis was by chi-square and likelihood-ratio tests. Odds ratio (OR) and 95% confidence intervals (95% CI) were determined. Results: The frequency of Ct was 15.6% and its presence was not associated with detection of p16/Ki-67 [OR = 1. 35 (0.5-3.4)]. There was also no association between abnormal cervical cytology and Ct-positivity [OR = 1.21 (0.46-3.2)]. Associations were observed between p16/Ki-67 and high-grade lesions detected by cytology and in biopsies [OR = 3.55 (1.50-8.42) and OR = 19.00 (0.6-7.2), respectively]. Conclusions: The asymptomatic women in our study had a high frequency of Ct infection but this was not associated with p16/Ki-67 detection in samples with abnormal cytology. The expression of p16/Ki-67 was highest in women with high-grade CIN (p = 0.003).info:eu-repo/semantics/publishedVersio

    Human Papillomaviruses and genital co-infections in gynaecological outpatients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High grade HPV infections and persistence are the strongest risk factors for cervical cancer. Nevertheless other genital microorganisms may be involved in the progression of HPV associated lesions.</p> <p>Methods</p> <p>Cervical samples were collected to search for human Papillomavirus (HPV), bacteria and yeast infections in gynaecologic outpatients. HPV typing was carried out by PCR and sequencing on cervical brush specimens. <it>Chlamydia trachomatis </it>was identified by strand displacement amplification (SDA) and the other microorganisms were detected by conventional methods.</p> <p>Results</p> <p>In this cross-sectional study on 857 enrolled outpatients, statistical analyses revealed a significant association of HPV with <it>C. trachomatis </it>and <it>Ureaplasma urealyticum (</it>at high density) detection, whereas no correlation was found between HPV infection and bacterial vaginosis, <it>Streptococcus agalactiae</it>, yeasts, <it>Trichomonas vaginalis </it>and <it>U. urealyticum</it>. <it>Mycoplasma hominis </it>was isolated only in a few cases both in HPV positive and negative women and no patient was infected with <it>Neisseria gonorrhoeae</it>.</p> <p>Conclusion</p> <p>Although bacterial vaginosis was not significantly associated with HPV, it was more common among the HPV positive women. A significant association between HPV and <it>C. trachomatis </it>was found and interestingly also with <it>U. urealyticum </it>but only at a high colonization rate. These data suggest that it may be important to screen for the simultaneous presence of different microorganisms which may have synergistic pathological effects.</p

    Critical synchronization dynamics of the Kuramoto model on connectome and small world graphs

    Get PDF
    The hypothesis, that cortical dynamics operates near criticality also suggests, that it exhibits universal critical exponents which marks the Kuramoto equation, a fundamental model for synchronization, as a prime candidate for an underlying universal model. Here, we determined the synchronization behavior of this model by solving it numerically on a large, weighted human connectome network, containing 804092 nodes, in an assumed homeostatic state. Since this graph has a topological dimension d<4d < 4, a real synchronization phase transition is not possible in the thermodynamic limit, still we could locate a transition between partially synchronized and desynchronized states. At this crossover point we observe power-law--tailed synchronization durations, with τt1.2(1)\tau_t \simeq 1.2(1), away from experimental values for the brain. For comparison, on a large two-dimensional lattice, having additional random, long-range links, we obtain a mean-field value: τt1.6(1)\tau_t \simeq 1.6(1). However, below the transition of the connectome we found global coupling control-parameter dependent exponents 1<τt21 < \tau_t \le 2, overlapping with the range of human brain experiments. We also studied the effects of random flipping of a small portion of link weights, mimicking a network with inhibitory interactions, and found similar results. The control-parameter dependent exponent suggests extended dynamical criticality below the transition point.Comment: 12 pages, 9 figures + Supplemenraty material pdf 2 pages 4 figs, 1 table, accepted version in Scientific Report

    Avalanches in a Stochastic Model of Spiking Neurons

    Get PDF
    Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue, both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together, where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of neuronal avalanches based on stochastic single neurons. The network consists of excitatory and inhibitory neurons, first with all-to-all connectivity and later with random sparse connectivity. Analyzing our model using the system size expansion, we show that the model obeys the standard Wilson-Cowan equations for large network sizes ( neurons). When excitation and inhibition are closely balanced, networks of thousands of neurons exhibit irregular synchronous activity, including the characteristic power law distribution of avalanche size. We show that these avalanches are due to the balanced network having weakly stable functionally feedforward dynamics, which amplifies some small fluctuations into the large population bursts. Balanced networks are thought to underlie a variety of observed network behaviours and have useful computational properties, such as responding quickly to changes in input. Thus, the appearance of avalanches in such functionally feedforward networks indicates that avalanches may be a simple consequence of a widely present network structure, when neuron dynamics are noisy. An important implication is that a network need not be “critical” for the production of avalanches, so experimentally observed power laws in burst size may be a signature of noisy functionally feedforward structure rather than of, for example, self-organized criticality
    corecore