6,844 research outputs found

    Analogy of the slow dynamics between the supercooled liquid and the supercooled plastic crystal states of difluorotetrachloroethane

    Full text link
    Slow dynamics of difluorotetrachloroethane in both supercooled plastic crystal and supercooled liquid states have been investigated from Molecular Dynamics simulations. The temperature and wave-vector dependence of collective dynamics in both states are probed using coherent dynamical scattering functions S(Q,t)S(Q,t). Our results confirm the strong analogy between molecular liquids and plastic crystals for which α\alpha-relaxation times and non-ergodicity parameters are controlled by the non trivial static correlations S(Q)S(Q) as predicted by the Mode Coupling Theory. The use of infinitely thin needles distributed on a lattice as model of plastic crystals is discussed

    Onset of slow dynamics in difluorotetrachloroethane glassy crystal

    Full text link
    Complementary Neutron Spin Echo and X-ray experiments and Molecular Dynamics simulations have been performed on difluorotetrachloroethane (CFCl2-CFCl2) glassy crystal. Static, single-molecule reorientational dynamics and collective dynamics properties are investigated. The orientational disorder is characterized at different temperatures and a change in nature of rotational dynamics is observed. We show that dynamics can be described by some scaling predictions of the Mode Coupling Theory (MCT) and a critical temperature TcT_{c} is determined. Our results also confirm the strong analogy between molecular liquids and plastic crystals for which α\alpha-relaxation times and non-ergodicity parameters are controlled by the non trivial static correlations as predicted by MCT

    Measurement of the ΔS=-ΔQ Amplitude from K_(e3)^0 Decay

    Get PDF
    We have measured the time distribution of the π^+e^-ν and π^-e^+ν modes from initial K^0's in a spark-chamber experiment performed at the Bevatron. From 1079 events between 0.2 and 7 K_S^0 lifetime, we find ReX=-0.069±0.036, ImX=+0.108_(-0.074)^(+0.092). This result is consistent with X=0 (relative probability = 0.25), but more than 4 standard deviations from the existing world average, +0.14 -0.13i

    Manifestation of classical wave delays in a fully quantized model of the scattering of a single photon

    Get PDF
    We consider a fully quantized model of spontaneous emission, scattering, and absorption, and study propagation of a single photon from an emitting atom to a detector atom both with and without an intervening scatterer. We find an exact quantum analog to the classical complex analytic signal of an electromagnetic wave scattered by a medium of charged oscillators. This quantum signal exhibits classical phase delays. We define a time of detection which, in the appropriate limits, exactly matches the predictions of a classically defined delay for light propagating through a medium of charged oscillators. The fully quantized model provides a simple, unambiguous, and causal interpretation of delays that seemingly imply speeds greater than c in the region of anomalous dispersion.Comment: 18 pages, 4 figures, revised for clarity, typos corrrecte

    Random sequential adsorption on a dashed line

    Full text link
    We study analytically and numerically a model of random sequential adsorption (RSA) of segments on a line, subject to some constraints suggested by two kinds of physical situations: - deposition of dimers on a lattice where the sites have a spatial extension; - deposition of extended particles which must overlap one (or several) adsorbing sites on the substrate. Both systems involve discrete and continuous degrees of freedom, and, in one dimension, are equivalent to our model, which depends on one length parameter. When this parameter is varied, the model interpolates between a variety of known situations : monomers on a lattice, "car-parking" problem, dimers on a lattice. An analysis of the long-time behaviour of the coverage as a function of the parameter exhibits an anomalous 1/t^2 approach to the jamming limit at the transition point between the fast exponential kinetics, characteristic of the lattice model, and the 1/t law of the continuous one.Comment: 14 pages (Latex) + 4 Postscript figure

    Inundation of a barrier island (Chandeleur Islands, Louisiana, USA) during a hurricane : observed water-level gradients and modeled seaward sand transport

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 119 (2014): 1498–1515, doi:10.1002/2013JF003069.Large geomorphic changes to barrier islands may occur during inundation, when storm surge exceeds island elevation. Inundation occurs episodically and under energetic conditions that make quantitative observations difficult. We measured water levels on both sides of a barrier island in the northern Chandeleur Islands during inundation by Hurricane Isaac. Wind patterns caused the water levels to slope from the bay side to the ocean side for much of the storm. Modeled geomorphic changes during the storm were very sensitive to the cross-island slopes imposed by water-level boundary conditions. Simulations with equal or landward sloping water levels produced the characteristic barrier island storm response of overwash deposits or displaced berms with smoother final topography. Simulations using the observed seaward sloping water levels produced cross-barrier channels and deposits of sand on the ocean side, consistent with poststorm observations. This sensitivity indicates that accurate water-level boundary conditions must be applied on both sides of a barrier to correctly represent the geomorphic response to inundation events. More broadly, the consequence of seaward transport is that it alters the relationship between storm intensity and volume of landward transport. Sand transported to the ocean side may move downdrift, or aid poststorm recovery by moving onto the beach face or closing recent breaches, but it does not contribute to island transgression or appear as an overwash deposit in the back-barrier stratigraphic record. The high vulnerability of the Chandeleur Islands allowed us to observe processes that are infrequent but may be important at other barrier islands.2015-01-1

    Stretching and squeezing of sessile dielectric drops by the optical radiation pressure

    Full text link
    We study numerically the deformation of sessile dielectric drops immersed in a second fluid when submitted to the optical radiation pressure of a continuous Gaussian laser wave. Both drop stretching and drop squeezing are investigated at steady state where capillary effects balance the optical radiation pressure. A boundary integral method is implemented to solve the axisymmetric Stokes flow in the two fluids. In the stretching case, we find that the drop shape goes from prolate to near-conical for increasing optical radiation pressure whatever the drop to beam radius ratio and the refractive index contrast between the two fluids. The semi-angle of the cone at equilibrium decreases with the drop to beam radius ratio and is weakly influenced by the index contrast. Above a threshold value of the radiation pressure, these "optical cones" become unstable and a disruption is observed. Conversely, when optically squeezed, the drop shifts from an oblate to a concave shape leading to the formation of a stable "optical torus". These findings extend the electrohydrodynamics approach of drop deformation to the much less investigated "optical domain" and reveal the openings offered by laser waves to actively manipulate droplets at the micrometer scale

    Dispersed Crude Oil Induces Dysbiosis In the Red Snapper \u3ci\u3eLutjanus campechanus\u3c/i\u3e External Microbiota

    Get PDF
    The fish external microbiota competitively excludes primary pathogens and prevents the proliferation of opportunists. A shift from healthy microbiota composition, known as dysbiosis, may be triggered by environmental stressors and increases host susceptibility to disease. The Deepwater Horizon (DWH) oil spill was a significant stressor event in the Gulf of Mexico. Despite anecdotal reports of skin lesions on fishes following the oil spill, little information is available on the impact of dispersed oil on the fish external microbiota. In this study, juvenile red snapper (Lutjanus campechanus) were exposed to a chemically enhanced water-accommodated fraction (CEWAF) of Corexit 9500/DWH oil (CEWAF) and/or the bacterial pathogen Vibrio anguillarum in treatments designed to detect changes in and recovery of the external microbiota. In fish chronically exposed to CEWAF, immunoglobulin M (IgM) expression significantly decreased between 2 and 4 weeks of exposure, coinciding with elevated liver total polycyclic aromatic hydrocarbons (PAHs). Dysbiosis was detected on fish chronically exposed to CEWAF compared to seawater controls, and addition of a pathogen challenge altered the final microbiota composition. Dysbiosis was prevented by returning fish to clean seawater for 21 days after 1 week of CEWAF exposure. Four fish exhibited lesions during the trial, all of which were exposed to CEWAF but not all of which were exposed to V. anguillarum. This study indicates that month-long exposure to dispersed oil leads to dysbiosis in the external microbiota. As the microbiota is vital to host health, these effects should be considered when determining the total impacts of pollutants in aquatic ecosystems

    Is there something of the MCT in orientationally disordered crystals ?

    Full text link
    Molecular Dynamics simulations have been performed on the orientationally disordered crystal chloroadamantane: a model system where dynamics are almost completely controlled by rotations. A critical temperature T_c = 225 K as predicted by the Mode Coupling Theory can be clearly determined both in the alpha and beta dynamical regimes. This investigation also shows the existence of a second remarkable dynamical crossover at the temperature T_x > T_c consistent with a previous NMR and MD study [1]. This allows us to confirm clearly the existence of a 'landscape-influenced' regime occurring in the temperature range [T_c-T_x] as recently proposed [2,3].Comment: 4 pages, 5 figures, REVTEX

    A novel ventilator design for COVID-19 and resource-limited settings

    Get PDF
    There has existed a severe ventilator deficit in much of the world for many years, due in part to the high cost and complexity of traditional ICU ventilators. This was highlighted and exacerbated by the emergence of the COVID-19 pandemic, during which the increase in ventilator production rapidly over ran the global supply chains for components. In response, we propose a new approach to ventilator design that meets the performance requirements for COVID-19 patients, while using components that minimise interference with the existing ventilator supply chains. The majority of current ventilator designs use proportional valves and flow sensors, which remainin short supply over a year into the pandemic. In the proposed design, the core components are on-off valves. Unlike proportional valves, on-off valves are widely available,but accurate control of ventilation using on-off valves is not straight forward. Our proposed solution combines four on-of 0valves, a two-litre reservoir, an oxygen sensor and two pressure sensors. Benchtop testing of a prototype was performed with a commercially available flow analyser and test lungs. We investigated the accuracy and precision of the prototype using both compressed gas supplies and a portable oxygen concentrator, and demonstrated the long-term durability over 15 days. The precision and accuracy of ventilation parameters were within the ranges specified in international guidelines in all tests.A numerical model of the system was developed and validated against experimental data. The model was used to determine usable ranges of valve flow coefficients to increase supply chain flexibility. This new design provides the performance necessary for the majority of patients that require ventilation. Applications include COVID-19 as well as pneumonia, influenza, and tuberculosis, which remain major causes of mortality in low and middleincome countries.The robustness, energy efficiency, ease of maintenance, price and availability of on-off valves are all advantageous over proportional valves. As a result, the proposed ventilator design will cost significantly less to manufacture and maintain than current market designs and has the potential to increase global ventilator availabilit
    • …
    corecore