226 research outputs found

    Guarding art galleries by guarding witnesses

    Get PDF
    Let P be a simple polygon. We de ne a witness set W to be a set of points su h that if any (prospective) guard set G guards W, then it is guaranteed that G guards P . We show that not all polygons admit a nite witness set. If a fi nite minimal witness set exists, then it cannot contain any witness in the interior of P ; all witnesses must lie on the boundary of P , and there an be at most one witness in the interior of any edge. We give an algorithm to compute a minimal witness set for P in O(n2 log n) time, if such a set exists, or to report the non-existence within the same time bounds. We also outline an algorithm that uses a witness set for P to test whether a (prospective) guard set sees all points in P

    From Evidence to Understanding: A Precarious Path

    Get PDF

    Engineering Art Galleries

    Full text link
    The Art Gallery Problem is one of the most well-known problems in Computational Geometry, with a rich history in the study of algorithms, complexity, and variants. Recently there has been a surge in experimental work on the problem. In this survey, we describe this work, show the chronology of developments, and compare current algorithms, including two unpublished versions, in an exhaustive experiment. Furthermore, we show what core algorithmic ingredients have led to recent successes

    Dilute magnetic contact for a spin GaN HEMT

    Get PDF
    Semiconductor CMOS nano-electronics is intensively seeking solutions for future digital applications. One of the most promising solutions to deliver a technological breakthrough is exploring electron spin in metals and semiconductors with applications from spin transistors to quantum sensors, and quantum computing. Spintronic applications rely on magnetic semiconductor materials with suitable properties. In particular, dilute magnetic semiconductors (DMS), such as Mn doped GaN, show the great promise of a high Curie temperature (220K–370K), exceeding room temperature, and a large concentration of holes. These are all the essential pre-requisites for operation of spin transistors in circuits. In this work, we dope an AlGaN/GaN heterostructure consisting of a GaN (2 nm) cap layer, an Al0.25Ga0.75N (25 nm) barrier, and a GaN (2 μm) substrate grown on a 6” Si wafer with Mn by sputtering deposition and thermal annealing to create a dilute magnetic semiconductor material following the process flow. While initial attempts resulted in the formation of a MnO surface layer, the SEM/XDS and XPS data suggest a diffusion of Mn into the GaN layer using thermal annealing at 900◦C for 7h with a concentration of 4.5% which is very close to the desired concentration of 5% needed for a DMS. The annealing temperature has to be below 1000◦ C since temperatures around 1000◦C result in significant damage to the 2DEG and diffusion of Al from the AlGaN layer

    Rethinking social cognition in light of psychosis:Reciprocal implications for cognition and psychopathology

    Get PDF
    The positive symptoms of psychosis largely involve the experience of illusory social actors, and yet our current measures of social cognition, at best, only weakly predict their presence. We review evidence to suggest that the range of current approaches in social cognition is not sufficient to explain the fundamentally social nature of these experiences. We argue that social agent representation is an important organizing principle for understanding social cognition and that alterations in social agent representation may be a factor in the formation of delusions and hallucination in psychosis. We evaluate the feasibility of this approach in light of clinical and nonclinical studies, developmental research, cognitive anthropology, and comparative psychology. We conclude with recommendations for empirical testing of specific hypotheses and how studies of social cognition could more fully capture the extent of social reasoning and experience in both psychosis and more prosaic mental states

    Overcoming the barriers to greater public engagement

    Get PDF
    Integrating science communication training into an undergraduate research project encourages greater academic involvement in public engagement, maximizes audience size, and provides high-quality research data

    Towards a model of talent development in physical education

    Get PDF
    Traditional conceptions of talent generally emphasise the construction of threshold values and the development of relatively unitary abilities, and this approach still dominates talent development programmes for elite sport. Most researchers on high ability, however, now favour domain-specific, multidimensional conceptions of ability that stress the development of behavioural potential and its interaction with personal and environmental characteristics. This paper presents a model of talent in physical education, drawing together findings from a wide range of literature on the realisation and inhibition of abilities, international studies of effective school-based identification and provision strategies, and a conception of the subject as an integration and realisation of different forms of ability. In presenting this model, the authors aim to redress the imbalance within the current debate from an almost total concern with out-of-school clubs and the preparation for adult elite sport, in favour of a more equitable and inclusive approach, premised upon the unique importance of mainstream, curricular physical education within any talent development scheme

    Is U.S. health care an appropriate system? A strategic perspective from systems science

    Get PDF
    <p>Abstract</p> <p>Context</p> <p>Systems science provides organizational principles supported by biologic findings that can be applied to any organization; any incongruence indicates an incomplete or an already failing system. U.S. health care is commonly referred to as a system that consumes an ever- increasing percentage of the gross domestic product and delivers seemingly diminishing value.</p> <p>Objective</p> <p>To perform a comparative study of U.S. health care with the principles of systems science and, if feasible, propose solutions.</p> <p>Design</p> <p>General systems theory provides the theoretical foundation for this observational research.</p> <p>Main Outcome Measures</p> <p>A degree of compliance of U.S. health care with systems principles and its space-time functional location within the dynamic systems model.</p> <p>Results of comparative analysis</p> <p>U.S. health care is an incomplete system further threatened by the fact that it functions in the zone of chaos within the dynamic systems model.</p> <p>Conclusion</p> <p>Complying with systems science principles and the congruence of pertinent cycles, U.S. health care would likely dramatically improve its value creation for all of society as well as its resiliency and long-term sustainability.</p> <p>Immediate corrective steps could be taken: Prioritize and incentivize <it>health </it>over <it>care</it>; restore fiscal soundness by combining health and life insurance for the benefit of the insured and the payer; rebalance horizontal/providers and vertical/government hierarchies.</p
    corecore