15 research outputs found

    Efficient resolution of potentially conflicting linear constraints in robotics

    No full text
    Submitted to IEEE TRO (05/August/2015)—A classical approach to handling potentially conflicting linear equality and inequality constraints in robotics is to impose a strict prioritization between them. Ensuring that the satisfaction of constraints with lower priority does not impact the satisfaction of constraints with higher priority is routinely done by solving a hierarchical least-squares problem. Such a task prioritization is often considered to be computationally demanding and, as a result, it is often approximated using a standard weighted least-squares problem. The main contribution of this article is to address this misconception and demonstrate, both in theory and in practice, that the hierarchical problem can in fact be solved faster than its weighted counterpart. The proposed approach to efficiently solving hierarchical least-squares problems is based on a novel matrix factorization, to be referred to as " lexicographic QR " , or ℓ-QR in short. We present numerical results based on three representative examples adopted from recent robotics literature which demonstrate that complex hierarchical problems can be tackled in real-time even with limited computational resources

    Efficient resolution of potentially conflicting linear constraints in robotics

    Get PDF
    Submitted to IEEE TRO (05/August/2015)—A classical approach to handling potentially conflicting linear equality and inequality constraints in robotics is to impose a strict prioritization between them. Ensuring that the satisfaction of constraints with lower priority does not impact the satisfaction of constraints with higher priority is routinely done by solving a hierarchical least-squares problem. Such a task prioritization is often considered to be computationally demanding and, as a result, it is often approximated using a standard weighted least-squares problem. The main contribution of this article is to address this misconception and demonstrate, both in theory and in practice, that the hierarchical problem can in fact be solved faster than its weighted counterpart. The proposed approach to efficiently solving hierarchical least-squares problems is based on a novel matrix factorization, to be referred to as " lexicographic QR " , or ℓ-QR in short. We present numerical results based on three representative examples adopted from recent robotics literature which demonstrate that complex hierarchical problems can be tackled in real-time even with limited computational resources

    Model predictive control of a walking bipedal robotusing online optimization

    No full text
    Humanoid robotics is a challenging and promising research field. Legged locomotion is one of the most important aspects of it. In spite of the progress achieved in the last years in control of walking robots, many problems are yet to be resolved. The inherent complexity of such robots makes their control a difficult task even on the modern hardware. In order to address this issue approximate models and high performance algorithms are employed. This thesis is focused on the model predictive control of a walking bipedal robot, which is approximated by an inverted pendulum, using online optimization. A special emphasis is made on the solvers that exploit the structure of quadratic optimization problems in the context of model predictive control. Two methods for solution of these problems are implemented: primal active set and primal logarithmic barrier methods. They are tested and compared in a simulation and on a humanoid robot. A software module for control of the Nao humanoid robot is developed for this purpose

    Préservation de l'équilibre et priorisation des tâches dans la commande du mouvement corps entier de robots humanoïdes

    No full text
    One of the greatest challenges in robot control is closing the gap between themotion capabilities of humans and humanoid robots. The difficulty lies in thecomplexity of the dynamical systems representing the said robots: theirnonlinearity, underactuation, discrete behavior due to collisions and friction,high number of degrees of freedom. Moreover, humanoid robots are supposed tooperate in non-deterministic environments, which require advanced real timecontrol. The currently prevailing approach to coping with these difficulties isto impose various limitations on the motions and employ approximate models ofthe robots. In this thesis, we follow the same line of research and propose anew approach to the design of balance preserving whole body motion controllers.The key idea is to leverage the advantages of whole body and approximate modelsby mixing them within a single predictive control problem with strictlyprioritized objectives.Balance preservation is one of the primary concerns in the control of humanoidrobots. Previous research has already established that anticipation of motionsis crucial for this purpose. We advocate that anticipation is helpful in thissense as a way to maintain capturability of the motion, i.e., the ability tostop. We stress that capturability of anticipated motions can be enforced withappropriate constraints. In practice, it is common to anticipate motions usingapproximate models in order to reduce computational effort, hence, a separatewhole body motion controller is needed for tracking. Instead, we propose tointroduce anticipation with an approximate model into the whole body motioncontroller. As a result, the generated whole body motions respect thecapturability constraints and the anticipated motions of an approximate modeltake into account whole body constraints and tasks. We pose our whole bodymotion controllers as optimization problems with strictly prioritizedobjectives. Though such prioritization is common in the literature, we believethat it is often not properly exploited. We, therefore, propose severalexamples of controllers, where prioritization is useful and necessary toachieve desired behaviors. We evaluate our controllers in two simulatedscenarios, where a whole body task influences walking motions of the robot andthe robot optionally exploits a hand contact to maintain balance whilestanding.Un des plus grands défis dans la commande des robots est de combler l'écart entre la capacité de mouvement de l'humain et des robots humanoïdes. La difficulté réside dans la complexité des systèmes dynamiques représentant les robots humanoïdes: la non linéarité, le sous-actionnement, le comportement non-lisse en raison de collisions et de frottement, le nombre élevé de degrés de liberté. De plus, les robots humanoïdes sont censés opérer dans des environnements non-déterministes, qui exigent une commande temps réel avancée.L'approche qui prévaut actuellement pour faire face à ces difficultés est d'imposer diverses restrictions sur les mouvements et d'employer des modèles approximatifs des robots. Dans cette thèse, nous suivons la même ligne de recherche et proposons une nouvelle approche pour la conception de contrôleurs corps entier qui préservent l'équilibre. L'idée principale est de tirer parti des avantages des modèles approximatifs et de corps entier en les mélangeant dans un seul problème de contrôle prédictif avec des objectifs strictement hiérarchisés.La préservation de l'équilibre est l'une des principales préoccupations dans la commande des robots humanoïdes. Des recherches antérieures ont déjà établi que l'anticipation des mouvements est essentiel à cet effet. Nous préconisons que l'anticipation est utile dans ce sens comme un moyen de maintenir la capturabilité du mouvement, i.e., la capacité de s'arrêter. Nous soulignons que capturabilité des mouvements prévus peut être imposée avec des contraintes appropriées. Dans la pratique, il est fréquent d'anticiper les mouvements du robot à l'aide de modèles approximatifs afin de réduire l'effort de calcul, par conséquent, un contrôleur séparé de mouvement du corps entier est nécessaire pour le suivi. Au lieu de cela, nous proposons d'introduire l'anticipation avec un modèle approximatif directement dans le contrôleur corps entier. En conséquence, les mouvements du corps entier générés respectent les contraintes de capturabilité et les mouvements anticipes du modèle approximatif prennent en compte les contraintes et les tâches désirées pour le corps entier. Nous posons nos contrôleurs du mouvement du corps entier comme des problèmes d'optimisation avec des objectifs strictement hiérarchisés. Bien que cet ordre de priorité soit commun dans la littérature, nous croyons qu'il est souvent mal exploité.Par conséquent, nous proposons plusieurs exemples de contrôleurs, où la hiérarchisation est utile et nécessaire pour atteindre les comportements souhaités. Nous évaluons nos contrôleurs dans deux scénarios simulés, où la tâche du corps entier du robot influence la marche et le robot exploite éventuellement un contact avec la main pour maintenir son équilibre en étant debout

    Préservation de l'équilibre et priorisation des tâches dans la commande du mouvement corps entier de robots humanoïdes

    No full text
    One of the greatest challenges in robot control is closing the gap between themotion capabilities of humans and humanoid robots. The difficulty lies in thecomplexity of the dynamical systems representing the said robots: theirnonlinearity, underactuation, discrete behavior due to collisions and friction,high number of degrees of freedom. Moreover, humanoid robots are supposed tooperate in non-deterministic environments, which require advanced real timecontrol. The currently prevailing approach to coping with these difficulties isto impose various limitations on the motions and employ approximate models ofthe robots. In this thesis, we follow the same line of research and propose anew approach to the design of balance preserving whole body motion controllers.The key idea is to leverage the advantages of whole body and approximate modelsby mixing them within a single predictive control problem with strictlyprioritized objectives.Balance preservation is one of the primary concerns in the control of humanoidrobots. Previous research has already established that anticipation of motionsis crucial for this purpose. We advocate that anticipation is helpful in thissense as a way to maintain capturability of the motion, i.e., the ability tostop. We stress that capturability of anticipated motions can be enforced withappropriate constraints. In practice, it is common to anticipate motions usingapproximate models in order to reduce computational effort, hence, a separatewhole body motion controller is needed for tracking. Instead, we propose tointroduce anticipation with an approximate model into the whole body motioncontroller. As a result, the generated whole body motions respect thecapturability constraints and the anticipated motions of an approximate modeltake into account whole body constraints and tasks. We pose our whole bodymotion controllers as optimization problems with strictly prioritizedobjectives. Though such prioritization is common in the literature, we believethat it is often not properly exploited. We, therefore, propose severalexamples of controllers, where prioritization is useful and necessary toachieve desired behaviors. We evaluate our controllers in two simulatedscenarios, where a whole body task influences walking motions of the robot andthe robot optionally exploits a hand contact to maintain balance whilestanding.Un des plus grands défis dans la commande des robots est de combler l'écart entre la capacité de mouvement de l'humain et des robots humanoïdes. La difficulté réside dans la complexité des systèmes dynamiques représentant les robots humanoïdes: la non linéarité, le sous-actionnement, le comportement non-lisse en raison de collisions et de frottement, le nombre élevé de degrés de liberté. De plus, les robots humanoïdes sont censés opérer dans des environnements non-déterministes, qui exigent une commande temps réel avancée.L'approche qui prévaut actuellement pour faire face à ces difficultés est d'imposer diverses restrictions sur les mouvements et d'employer des modèles approximatifs des robots. Dans cette thèse, nous suivons la même ligne de recherche et proposons une nouvelle approche pour la conception de contrôleurs corps entier qui préservent l'équilibre. L'idée principale est de tirer parti des avantages des modèles approximatifs et de corps entier en les mélangeant dans un seul problème de contrôle prédictif avec des objectifs strictement hiérarchisés.La préservation de l'équilibre est l'une des principales préoccupations dans la commande des robots humanoïdes. Des recherches antérieures ont déjà établi que l'anticipation des mouvements est essentiel à cet effet. Nous préconisons que l'anticipation est utile dans ce sens comme un moyen de maintenir la capturabilité du mouvement, i.e., la capacité de s'arrêter. Nous soulignons que capturabilité des mouvements prévus peut être imposée avec des contraintes appropriées. Dans la pratique, il est fréquent d'anticiper les mouvements du robot à l'aide de modèles approximatifs afin de réduire l'effort de calcul, par conséquent, un contrôleur séparé de mouvement du corps entier est nécessaire pour le suivi. Au lieu de cela, nous proposons d'introduire l'anticipation avec un modèle approximatif directement dans le contrôleur corps entier. En conséquence, les mouvements du corps entier générés respectent les contraintes de capturabilité et les mouvements anticipes du modèle approximatif prennent en compte les contraintes et les tâches désirées pour le corps entier. Nous posons nos contrôleurs du mouvement du corps entier comme des problèmes d'optimisation avec des objectifs strictement hiérarchisés. Bien que cet ordre de priorité soit commun dans la littérature, nous croyons qu'il est souvent mal exploité.Par conséquent, nous proposons plusieurs exemples de contrôleurs, où la hiérarchisation est utile et nécessaire pour atteindre les comportements souhaités. Nous évaluons nos contrôleurs dans deux scénarios simulés, où la tâche du corps entier du robot influence la marche et le robot exploite éventuellement un contact avec la main pour maintenir son équilibre en étant debout

    Balancing a humanoid robot with a prioritized contact force distribution

    Get PDF
    International audienceHumanoid robots propel themselves and perform tasks by interacting with their environment through contact forces. Typically, nonuniqueness of these forces is dealt with by distributing them evenly between the contacts. In the present paper, we introduce strict prioritization in contact force distribution, to reflect situations when an application of certain contact forces should be avoided as much as possible, for example, due to a fragility of the support. We illustrate this by designing a whole body motion controller for a setting with multiple noncoplanar contacts, where application of an optional contact force is allowed only if it is necessary to maintain balance and execute a task. Balance preservation is addressed by imposing a capturability constraint based on anticipation with a linear model adapted to multiple noncoplanar contacts. The controller is evaluated in simulations

    Whole body motion controller with long-term balance constraints

    Get PDF
    International audienceThe standard approach to real-time control of humanoid robots relies on approximate models to produce a motion plan, which is then used to control the whole body. Separation of the planning stage from the controller makes it difficult to account for the whole body motion objectives and constraints in the plan. For this reason, we propose to omit the planning stage and introduce long-term balance constraints in the whole body controller to compensate for this omission. The new controller allows for generation of whole body walking motions, which are automatically decided based on both the whole body motion objectives and balance preservation constraints. The validity of the proposed approach is demonstrated in simulation in a case where the walking motion is driven by a desired wrist position. This approach is general enough to allow handling seamlessly various whole body motion objectives, such as desired head motions, obstacle avoidance for all parts of the robot, etc

    Safe navigation strategies for a biped robot walking in a crowd

    Get PDF
    International audienceSafety needs to be guaranteed before we can introduce robots into our working environments. For a biped robot to navigate safely in a crowd it must maintain balance and avoid collisions. In highly dynamic and unpredictable environments like crowds, collision avoidance is usually interpreted as passive safety, i.e. that the robot can stop before any collision occurs. We show that both balance preservation and passive safety can be analyzed, from the point of view of viability theory, as the ability of the robot to stop safely at some point in the future. This allows us to address both problems with a single model predictive controller with appropriate terminal constraints. We demonstrate that this controller predicts failures (falls and collisions) as early as the duration of the preview horizon. Finally, we propose a new strategy for safe navigation that relaxes the passive safety conditions to allow the robot to avoid a greater number of collisions

    Geometric and numerical aspects of redundancy

    Get PDF
    International audienceIf some resources of a robot are redundant with respect to a given objective, they can be used to address other, additional objectives. Since the amount of resources required to realize a given objective can vary, depending on the situation, this gives rise to a limited form of decision making, when assigning resources to different objectives according to the situation. Such decision making emerges in case of conflicts between objectives, and these conflicts appear to be situations of linear dependency and, ultimately, singularity of the solutions. Using an elementary model of a mobile manipulator robot with two degrees of freedom, we show how standard resolution schemes behave unexpectedly and inefficiently in such situations. We propose then as a remedy to introduce carefully tuned artificial conflicts, in the form of a trust region

    A hierarchical approach to minimum-time control of industrial robots

    Get PDF
    International audienceA novel approach to minimum-time control is presented. It is stated in terms of a hierarchical optimization problem, which is standard in the field of robotics. This is advantageous as already existing tools can be used to approach its solution. Our formulation is applied to the online generation of trajectories for industrial robots performing pick and place operations in the presence of obstacles. Model predictive control is used in order to achieve reactive system behavior and to obtain accurate local approximations of the collision avoidance constraints (which are nonconvex). Our approach has the capacity to suppress high frequency chattering in the control signal in the presence of noise: a common drawback of aggressive control strategies. Experiment using two SCARA robots that share the same working environment is used to evaluate the presented approach
    corecore