40 research outputs found
Benefit versus cost trade-offs of masting across seed-to-seedling transition for a dominant subtropical forest species
Masting is a common reproductive strategy regulating seedling regeneration in many perennial plant species. The evolutionary origins and functional benefits of masting have been explained by well-supported hypotheses relating to economies of scale of seed production. Nevertheless, our understanding of the potential costs of masting for the plant seed-to-seedling transitions remains limited. We tracked the seed fate and documented changes in the seed spatial distribution patterns during the seed-to-seedling transition process of Castanopsis fargesii, a dominant species of subtropical evergreen broad-leaved forests in China under natural conditions for more than 6 years. Masting resulted in a high proportion of seeds escaping predation by vertebrates and rodents, supporting the predator satiation hypothesis. However, it increased the pre-dispersal seed predation by insects, and decreased the seed germination rate due to a negative effect on seed mass. This resulted in seed-to-seedling transition rates during mast years to be roughly half as much as during non-mast years. In addition, masting negatively affected the spatial rearrangement of seeds, resulting in a spatial aggregative distribution pattern of newly germinated seedlings. The combined negative effects of smaller seeds and spatially aggregated seedlings reduced the survival rate of newly germinated seedlings at seedling establishment stage. Synthesis. Considering the whole seed-to-established seedling transition process, the benefits of masting on seedling recruitment due to the effective seed predator situation by vertebrates and rodents were decreased by the additional costs on seed mass, seed germination, seed spatial arrangement and seedling establishment. Our results highlight the importance of considering both the positive and negative effects of masting at each stage of the seed-to-seedling transition. Inferences based on seed predation and recruitment of newly germinated seedlings alone would lead to an overly optimistic conclusion about the benefits of masting. © 2021 British Ecological Societ
Impurity Antimony-Induced Creep Property Deterioration and Its Suppression by Rare Earth Ceriumfor a 9Cr-1Mo Ferritic Heat-Resistant Steel
The high temperature creep properties of three groups of modified 9Cr-1Mo steel samples, undoped, doped with Sb, and doped with Sb and Ce, are evaluated under the applied stresses from 150 MPa to 210 MPa and at the temperatures from 873–923 K. The creep behavior follows the temperature-compensated power law as well as the Monkman-Grant relation. The creep activation energy for the Sb-doped steel (519 kJ/mol) is apparently lower than that for the undoped one (541 kJ/mol), but it is considerably higher for the Sb+Ce-doped steel (621 kJ/mol). Based on the obtained relations, both the creep lifetimes under 50 MPa, 80 MPa, and 100 MPa in the range 853–923 K and the 105 h creep rupture strengths at 853 K, 873 K, and 893 K are predicted. It is demonstrated that the creep properties of the Sb-doped steel are considerably deteriorated but those of the Sb+Ce-doped steel are significantly improved as compared with the undoped steel. Microstructural and microchemical characterizations indicate that the minor addition of Ce can stabilize the microstructure of the steel by segregating to grain boundaries and dislocations, thereby offsetting the deleterious effect of Sb by coarsening the microstructure and weakening the grain boundary
Hardening Embrittlement and Non-Hardening Embrittlement of Welding-Heat-Affected Zones in a Cr-Mo Low Alloy Steel
The embrittlement of heat affected zones (HAZs) resulting from the welding of a P-doped 2.25Cr-1Mo steel was studied by the analysis of the fracture appearance transition temperatures (FATTs) of the HAZs simulated under a heat input of 45 kJ/cm with different peak temperatures. The FATTs of the HAZs both with and without tempering increased with the rise of the peak temperature. However, the FATTs were apparently lower for the tempered HAZs. For the as-welded (untempered) HAZs, the FATTs were mainly affected by residual stress, martensite/austenite (M/A) islands, and bainite morphology. The observed embrittlement is a hardening embrittlement. On the other hand, the FATTs of the tempered HAZs were mainly affected by phosphorus grain boundary segregation, thereby causing a non-hardening embrittlement. The results demonstrate that the hardening embrittlement of the as-welded HAZs was more severe than the non-hardening embrittlement of the tempered HAZs. Consequently, a post-weld heat treatment should be carried out if possible so as to eliminate the hardening embrittlement
Highly Enhanced Hot Ductility Performance of Advanced SA508-4N RPV Steel by Trace Impurity Phosphorus and Rare Earth Cerium
Advanced SA508-4N RPV steel samples, unadded, P-added, and P+Ce-added, are investigated on their hot ductility behavior. Hot tensile tests are carried out in the temperature range of 750 to 1000 °C through a Gleeble 1500D machine. It is demonstrated that the deformation temperatures of all the three steels are located in the austenite single-phase region. There is no ductility trough present for the P+Ce-added steel, but the unadded one exhibits a deep ductility trough. The reduction of area (RA) of the former is always higher than 75% and increases with rising temperature until reaching ~95% at 900 °C or above, whereas the lowest RA value of the latter is only ~50% at 850 °C. Microanalysis indicates that the grain boundary segregation of P and Ce takes place in the tested P+Ce-added steel. This may restrain the boundary sliding so as to improve the hot ductility behavior of the steel. Furthermore, the addition of P and Ce is able to facilitate the occurrence of the dynamic recrystallization (DR) of the steel, lowering the initial temperature of DR from ~900 to ~850 °C and thereby enhancing the hot ductility performance. Consequently, the combined addition of P and Ce can significantly improve the hot ductility of SA508-4N RPV steel, thereby improving its continuous casting performance and hot workability
Measurement Uncertainty and Representation of Tensile Mechanical Properties in Metals
The International Organization for Standardization Technical Committee for Metallic Materials—Tensile Testing stated in 2011 that temperature and strain rate variations would induce a change in the results of tensile tests, termed as the measurement uncertainty of tensile mechanical properties in metals. The uncertainty means that the tensile testing results of a specimen at a temperature and strain rate are not the original mechanical properties possessed prior to the testing. Hence, since the time of Galileo the results of tensile testing have been incorrectly interpreted as the original mechanical properties of specimens, thereby forming a paradox. At the turn of the 21st century, the micro-theory of metallic elastic deformation was proposed, identifying that a change in microstructure at atomic level could occur during elastic deformation, leading to a change in the concentration of solute (impurity) at grain boundaries/around dislocations. The micro-theory has been used to explain the mechanism of the measurement uncertainty. Different tensile temperatures and strain rates correspond to different durations of elastic deformation during tensile testing, different concentrations of solute at grain boundaries/dislocations, and thus different mechanical properties. On this basis, a new technology system of tensile testing is suggested, i.e., a “mechanical property–tensile strain rate” curve at a given test temperature can be used to evaluate the original mechanical property. The higher the strain rate is, the closer the property on the curve is to the original property. Therefore, to determine the original mechanical property of the tested metal, a sufficiently high strain rate is required. The curve can also characterize the property variation of the tested metal in service with the service time. In addition, the property characterized by a point on the curve can represent the property of the tested metal when processing-deformed with the corresponding strain rate. As an example of the application of the new technology system, the property of high-entropy alloys is represented with a curve. The results show that the new technology system could change the conceptual framework and testing technology system of metallic mechanics