12,276 research outputs found

    Iterative resource allocation based on propagation feature of node for identifying the influential nodes

    Full text link
    The Identification of the influential nodes in networks is one of the most promising domains. In this paper, we present an improved iterative resource allocation (IIRA) method by considering the centrality information of neighbors and the influence of spreading rate for a target node. Comparing with the results of the Susceptible Infected Recovered (SIR) model for four real networks, the IIRA method could identify influential nodes more accurately than the tradition IRA method. Specially, in the Erdos network, the Kendall's tau could be enhanced 23\% when the spreading rate is 0.12. In the Protein network, the Kendall's tau could be enhanced 24\% when the spreading rate is 0.08.Comment: 6 pages, 5 figure

    A diagrammatic categorification of the fermion algebra

    Full text link
    In this paper, we study the diagrammatic categorification of the fermion algebra. We construct a graphical category corresponding to the one-dimensional fermion algebra, and we investigate the properties of this category. The categorical analogues of the Fock states are some kind of 1-morphisms in our category, and the dimension of the vector space of 2-morphisms is exactly the inner product of the corresponding Fock states. All the results in our categorical framework coincide exactly with those in normal quantum mechanics.Comment: 10 pages, many TikZ figures. To appear in Chin. Phys.

    Efficient scheme for three-photon Greenberger-Horne-Zeilinger state generation

    Full text link
    We propose an efficient scheme for the generation of three-photon Greenberger-Horne-Zeilinger (GHZ) state with linear optics and postselection. Several devices are designed and a two-mode quantum nondemolition (QND) detection is introduced to obtain the desired state. It is worth noting that the states which have entanglement in both polarization and spatial degrees of freedom are created in one of the designed setups. The method described in the present scheme can create a large number of three-photon GHZ states in principle. We also discuss an approach to generate the desired GHZ state in the presence of channel noise.Comment: 7pages, 3 figure

    Polymorphisms of the _ENPP1_ gene are not associated with type 2 diabetes or obesity in the Chinese Han population

    Get PDF
    *Objective:* Type 2 Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia and with a major feature of insulin resistance. Genetic association studies have suggested that _ENPP1_ might play a potential role in susceptibility to type 2 diabetes and obesity. Our study aimed to examine the association between _ENPP1_ and type 2 diabetes and obesity.

*Design:* Association study between two SNPs, rs1044498 (K121Q) and rs7754561 of ENPP1 and diabetes and obesity in the Chinese Han population.

*Subjects:* 1912 unrelated patients (785 male and 1127 female with a mean age 63.8 ± 9 years), 236 IFG/IGT subjects (83 male and 153 female with a mean age 64 ± 9 years) and 2041 controls (635 male and 1406 female with a mean age 58 ± 9 years).
 
*Measurements:* Subjects were genotyped for two SNPs using TaqMan technology on an ABI7900 system and tested by regression analysis.

*Results:* By logistic regression analysis, rs1044498 (K121Q) and rs7754561 showed no statistical association with type 2 diabetes, obesity under additive, dominant and recessive models either before or after adjusting for sex and age. Haplotype analysis found a marginal association of haplotype C-G (p=0.05) which was reported in the previous study.

*Conclusion:* Our investigation did not replicated the positive association found previously and suggested that the polymorphisms of _ENPP1_ might not play a major role in the susceptibility to type 2 diabetes or obesity in the Chinese Han population

    Progressive amorphization of GeSbTe phase-change material under electron beam irradiation

    Full text link
    Fast and reversible phase transitions in chalcogenide phase-change materials (PCMs), in particular, Ge-Sb-Te compounds, are not only of fundamental interests, but also make PCMs based random access memory (PRAM) a leading candidate for non-volatile memory and neuromorphic computing devices. To RESET the memory cell, crystalline Ge-Sb-Te has to undergo phase transitions firstly to a liquid state and then to an amorphous state, corresponding to an abrupt change in electrical resistance. In this work, we demonstrate a progressive amorphization process in GeSb2Te4 thin films under electron beam irradiation on transmission electron microscope (TEM). Melting is shown to be completely absent by the in situ TEM experiments. The progressive amorphization process resembles closely the cumulative crystallization process that accompanies a continuous change in electrical resistance. Our work suggests that if displacement forces can be implemented properly, it should be possible to emulate symmetric neuronal dynamics by using PCMs
    corecore