22,801 research outputs found
Deep Descriptor Transforming for Image Co-Localization
Reusable model design becomes desirable with the rapid expansion of machine
learning applications. In this paper, we focus on the reusability of
pre-trained deep convolutional models. Specifically, different from treating
pre-trained models as feature extractors, we reveal more treasures beneath
convolutional layers, i.e., the convolutional activations could act as a
detector for the common object in the image co-localization problem. We propose
a simple but effective method, named Deep Descriptor Transforming (DDT), for
evaluating the correlations of descriptors and then obtaining the
category-consistent regions, which can accurately locate the common object in a
set of images. Empirical studies validate the effectiveness of the proposed DDT
method. On benchmark image co-localization datasets, DDT consistently
outperforms existing state-of-the-art methods by a large margin. Moreover, DDT
also demonstrates good generalization ability for unseen categories and
robustness for dealing with noisy data.Comment: Accepted by IJCAI 201
Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation
For human pose estimation in monocular images, joint occlusions and
overlapping upon human bodies often result in deviated pose predictions. Under
these circumstances, biologically implausible pose predictions may be produced.
In contrast, human vision is able to predict poses by exploiting geometric
constraints of joint inter-connectivity. To address the problem by
incorporating priors about the structure of human bodies, we propose a novel
structure-aware convolutional network to implicitly take such priors into
account during training of the deep network. Explicit learning of such
constraints is typically challenging. Instead, we design discriminators to
distinguish the real poses from the fake ones (such as biologically implausible
ones). If the pose generator (G) generates results that the discriminator fails
to distinguish from real ones, the network successfully learns the priors.Comment: Fixed typos. 14 pages. Demonstration videos are
http://v.qq.com/x/page/c039862eira.html,
http://v.qq.com/x/page/f0398zcvkl5.html,
http://v.qq.com/x/page/w0398ei9m1r.htm
Efficient Processing of k Nearest Neighbor Joins using MapReduce
k nearest neighbor join (kNN join), designed to find k nearest neighbors from
a dataset S for every object in another dataset R, is a primitive operation
widely adopted by many data mining applications. As a combination of the k
nearest neighbor query and the join operation, kNN join is an expensive
operation. Given the increasing volume of data, it is difficult to perform a
kNN join on a centralized machine efficiently. In this paper, we investigate
how to perform kNN join using MapReduce which is a well-accepted framework for
data-intensive applications over clusters of computers. In brief, the mappers
cluster objects into groups; the reducers perform the kNN join on each group of
objects separately. We design an effective mapping mechanism that exploits
pruning rules for distance filtering, and hence reduces both the shuffling and
computational costs. To reduce the shuffling cost, we propose two approximate
algorithms to minimize the number of replicas. Extensive experiments on our
in-house cluster demonstrate that our proposed methods are efficient, robust
and scalable.Comment: VLDB201
- …