2,384 research outputs found
3D time series analysis of cell shape using Laplacian approaches
Background:
Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes.
Results:
We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells.
Conclusions:
The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations
The mixed problem for the Laplacian in Lipschitz domains
We consider the mixed boundary value problem or Zaremba's problem for the
Laplacian in a bounded Lipschitz domain in R^n. We specify Dirichlet data on
part of the boundary and Neumann data on the remainder of the boundary. We
assume that the boundary between the sets where we specify Dirichlet and
Neumann data is a Lipschitz surface. We require that the Neumann data is in L^p
and the Dirichlet data is in the Sobolev space of functions having one
derivative in L^p for some p near 1. Under these conditions, there is a unique
solution to the mixed problem with the non-tangential maximal function of the
gradient of the solution in L^p of the boundary. We also obtain results with
data from Hardy spaces when p=1.Comment: Version 5 includes a correction to one step of the main proof. Since
the paper appeared long ago, this submission includes the complete paper,
followed by a short section that gives the correction to one step in the
proo
Giant Faraday rotation in single- and multilayer graphene
Optical Faraday rotation is one of the most direct and practically important
manifestations of magnetically broken time-reversal symmetry. The rotation
angle is proportional to the distance traveled by the light, and up to now
sizeable effects were observed only in macroscopically thick samples and in
two-dimensional electron gases with effective thicknesses of several
nanometers. Here we demonstrate that a single atomic layer of carbon - graphene
- turns the polarization by several degrees in modest magnetic fields. The
rotation is found to be strongly enhanced by resonances originating from the
cyclotron effect in the classical regime and the inter-Landau-level transitions
in the quantum regime. Combined with the possibility of ambipolar doping, this
opens pathways to use graphene in fast tunable ultrathin infrared
magneto-optical devices
Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain
The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here
C-reactive protein levels after 4 types of arthroplasty
Background and purpose Postoperative C-reactive protein (CRP) levels in serum appear to reflect surgical trauma. We examined CRP levels after 4 types of arthroplasty
Genome-wide signatures of convergent evolution in echolocating mammals
Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes(1-3). However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures(4,5). Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level(6-9). Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution(9,10) although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised
Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis
Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al
Secular Evolution and the Formation of Pseudobulges in Disk Galaxies
We review internal processes of secular evolution in galaxy disks,
concentrating on the buildup of dense central features that look like
classical, merger-built bulges but that were made slowly out of disk gas. We
call these pseudobulges. As an existence proof, we review how bars rearrange
disk gas into outer rings, inner rings, and gas dumped into the center. In
simulations, this gas reaches high densities that plausibly feed star
formation. In the observations, many SB and oval galaxies show central
concentrations of gas and star formation. Star formation rates imply plausible
pseudobulge growth times of a few billion years. If secular processes built
dense central components that masquerade as bulges, can we distinguish them
from merger-built bulges? Observations show that pseudobulges retain a memory
of their disky origin. They have one or more characteristics of disks: (1)
flatter shapes than those of classical bulges, (2) large ratios of ordered to
random velocities indicative of disk dynamics, (3) small velocity dispersions,
(4) spiral structure or nuclear bars in the bulge part of the light profile,
(5) nearly exponential brightness profiles, and (6) starbursts. These
structures occur preferentially in barred and oval galaxies in which secular
evolution should be rapid. So the cleanest examples of pseudobulges are
recognizable. Thus a large variety of observational and theoretical results
contribute to a new picture of galaxy evolution that complements hierarchical
clustering and merging.Comment: 92 pages, 21 figures in 30 Postscript files; to appear in Annual
Review of Astronomy and Astrophysics, Vol. 42, 2004, in press; for a version
with full resolution figures, see
http://chandra.as.utexas.edu/~kormendy/ar3ss.htm
State-space Manifold and Rotating Black Holes
We study a class of fluctuating higher dimensional black hole configurations
obtained in string theory/ -theory compactifications. We explore the
intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the
Hessian of the coarse graining entropy, defined over an ensemble of brane
microstates. It has been shown that the state-space geometry spanned by the set
of invariant parameters is non-degenerate, regular and has a negative scalar
curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes,
supersymmetric black holes, - configurations and the
associated BMPV black holes. Interestingly, these solutions demonstrate that
the principal components of the state-space metric tensor admit a positive
definite form, while the off diagonal components do not. Furthermore, the ratio
of diagonal components weakens relatively faster than the off diagonal
components, and thus they swiftly come into an equilibrium statistical
configuration. Novel aspects of the scaling property suggest that the
brane-brane statistical pair correlation functions divulge an asymmetric
nature, in comparison with the others. This approach indicates that all above
configurations are effectively attractive and stable, on an arbitrary
hyper-surface of the state-space manifolds. It is nevertheless noticed that
there exists an intriguing relationship between non-ideal inter-brane
statistical interactions and phase transitions. The ramifications thus
described are consistent with the existing picture of the microscopic CFTs. We
conclude with an extended discussion of the implications of this work for the
physics of black holes in string theory.Comment: 44 pages, Keywords: Rotating Black Holes; State-space Geometry;
Statistical Configurations, String Theory, M-Theory. PACS numbers: 04.70.-s
Physics of black holes; 04.70.Bw Classical black holes; 04.70.Dy Quantum
aspects of black holes, evaporation, thermodynamics; 04.50.Gh
Higher-dimensional black holes, black strings, and related objects. Edited
the bibliograph
- …