5,361 research outputs found
Multirate Kalman filtering approach for optimal two-dimensional signal reconstruction from noisy subband systems
The International Conference on Image Processing, Santa Barbara, California, 26-29 October 1997Conventional synthesis filters in subband systems lose their optimality when additive noise due, for example, to signal quantization, disturbs the subband components. The multichannel representation of subband signal is combined with the statistical model of input signal to derive the multirate state-space model for filter bank system with additive noises. Thus the signal reconstruction problem in subband system can be formulated as the process of optimal state estimation in the equivalent multirate state-space model. With the input signal embedded in the state vector, the multirate Kalman filtering provides the minimum-variance reconstruction of input signal. Using the powerful Kronecker product notation, the results and derivations can then be extended to the 2-D cases. Incorporated with the vector dynamical model, the 2-D multirate state-space model for 2-D Kalman filtering is developed. Computer simulation with the proposed 2-D multirate Kalman filter gives favorable results.published_or_final_versio
Effect of iron loading on isolated rat myocardium
2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase
The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair
Skyrmion fluctuations at a first-order phase transition boundary
Magnetic skyrmions are topologically protected spin textures with promising prospects for applications in data storage. They can form a lattice state due to competing magnetic interactions and are commonly found in a small region of the temperature - magnetic field phase diagram. Recent work has demonstrated that these magnetic quasi-particles fluctuate at the μeV energy scale. Here, we use a coherent x-ray correlation method at an x-ray free-electron laser to investigate these fluctuations in a magnetic phase coexistence region near a first-order transition boundary where fluctuations are not expected to play a major role. Surprisingly, we find that the relaxation of the intermediate scattering function at this transition differs significantly compared to that deep in the skyrmion lattice phase. The observation of a compressed exponential behavior suggests solid-like dynamics, often associated with jamming. We assign this behavior to disorder and the phase coexistence observed in a narrow field-window near the transition, which can cause fluctuations that lead to glassy behavior
Supernova Remnants as Clues to Their Progenitors
Supernovae shape the interstellar medium, chemically enrich their host
galaxies, and generate powerful interstellar shocks that drive future
generations of star formation. The shock produced by a supernova event acts as
a type of time machine, probing the mass loss history of the progenitor system
back to ages of 10 000 years before the explosion, whereas supernova
remnants probe a much earlier stage of stellar evolution, interacting with
material expelled during the progenitor's much earlier evolution. In this
chapter we will review how observations of supernova remnants allow us to infer
fundamental properties of the progenitor system. We will provide detailed
examples of how bulk characteristics of a remnant, such as its chemical
composition and dynamics, allow us to infer properties of the progenitor
evolution. In the latter half of this chapter, we will show how this exercise
may be extended from individual objects to SNR as classes of objects, and how
there are clear bifurcations in the dynamics and spectral characteristics of
core collapse and thermonuclear supernova remnants. We will finish the chapter
by touching on recent advances in the modeling of massive stars, and the
implications for observable properties of supernovae and their remnants.Comment: A chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and
Paul Murdin (18 pages, 6 figures
Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion
Toxoplasma (toxoplasmosis) and Plasmodium (malaria) use unique secretory organelles for migration, cell invasion, manipulation of host cell functions, and cell egress. In particular, the apical secretory micronemes and rhoptries of apicomplexan parasites are essential for successful host infection. New findings reveal that the contents of these organelles, which are transported through the endoplasmic reticulum (ER) and Golgi, also require the parasite endosome-like system to access their respective organelles. In this review, we discuss recent findings that demonstrate that these parasites reduced their endosomal system and modified classical regulators of this pathway for the biogenesis of apical organelles
Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4
The small ubiquitin-like modifier (SUMO) can form polymeric chains that are important signals in cellular processes such as meiosis, genome maintenance and stress response. The SUMO-targeted ubiquitin ligase RNF4 engages with SUMO chains on linked substrates and catalyses their ubiquitination, which targets substrates for proteasomal degradation. Here we use a segmental labelling approach combined with solution nuclear magnetic resonance (NMR) spectroscopy and biochemical characterization to reveal how RNF4 manipulates the conformation of the SUMO chain, thereby facilitating optimal delivery of the distal SUMO domain for ubiquitin transfer
Formation of heavy d-electron quasiparticles in Sr₃Ru₂O₇
The phase diagram of Sr3Ru2O7 shows hallmarks of strong electron correlations despite the modest Coulomb interaction in the Ru 4d shell. We use angle-resolved photoelectron spectroscopy measurements to provide microscopic insight into the formation of the strongly renormalized heavy d-electron liquid that controls the physics of Sr3Ru2O7. Our data reveal itinerant Ru 4d-states confined over large parts of the Brillouin zone to an energy range of <6 meV, nearly three orders of magnitude lower than the bare band width. We show that this energy scale agrees quantitatively with a characteristic thermodynamic energy scale associated with quantum criticality and illustrate how it arises from a combination of back-folding due to a structural distortion and the hybridization of light and strongly renormalized, heavy quasiparticle bands. The resulting heavy Fermi liquid has a marked k-dependence of the renormalization which we relate to orbital mixing along individual Fermi surface sheets
The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura
Abstract
We sequenced the mitochondrial genomes of the spider crabs Maja crispata and Maja squinado (Majidae, Brachyura). Both genomes contain the whole set of 37 genes characteristic of Bilaterian genomes, encoded on both \u3b1- and \u3b2-strands. Both species exhibit the same gene order, which is unique among known animal genomes. In particular, all the genes located on the \u3b2-strand form a single block. This gene order was analysed together with the other nine gene orders known for the Brachyura. Our study confirms that the most widespread gene order (BraGO) represents the plesiomorphic condition for Brachyura and was established at the onset of this clade. All other gene orders are the result of transformational pathways originating from BraGO. The different gene orders exhibit variable levels of genes rearrangements, which involve only tRNAs or all types of genes. Local homoplastic arrangements were identified, while complete gene orders remain unique and represent signatures that can have a diagnostic value. Brachyura appear to be a hot-spot of gene order diversity within the phylum Arthropoda. Our analysis, allowed to track, for the first time, the fully evolutionary pathways producing the Brachyuran gene orders. This goal was achieved by coupling sophisticated bioinformatic tools with phylogenetic analysis
Correlation between Discharged Worms and Fecal Egg Counts in Human Clonorchiasis
Clonorchiasis is a major neglected disease in East Asia. Worm data in infected humans are very limited, and only egg counts roughly estimate infection burden of the worms. In endemic areas, we recruited infected cases and tried to collect the adult worms from them. They were treated with 3 doses of praziquantel, and purged next day under fasting. Adult worms of C. sinensis were recovered from their diarrheal feces. The worms discharged from humans after treatment are minimum confirmed numbers. The worm recovery rate noticeably increased in subjects with higher egg counts. The number of collected worms was well-correlated with the egg counts. Worm collection by praziquantel medication and purgation is a safe non-invasive method to get worm information from human. The present study confirms that at least 110 worms are infected in a human body with egg counts per gram of feces around 3,000, and egg productivity of a worm per day is around 4,000
- …