60 research outputs found

    High-redshift elliptical galaxies: are they (all) really compact?

    Get PDF
    We investigate the properties of 12 ultra-massive passively evolving early type galaxies (ETGs) at z_phot>1.4 in the COSMOS 2 deg^2 field. These 12 ETGs were selected as pBzKs, have accurate 1.4<= z_phot <=1.7,high Sersic index profiles typical of ellipticals, no detection at 24 micron, resulting in a complete ETG sample at M*>2.5x10^11 M_sun (Chabrier IMF). Contrary to previous claims, the half light radii estimated in very high S/N imaging data from HST+ACS are found to be large for most of the sample, consistent with local ellipticals. If the high redshift ETGs with M*<2.5x10^11 M_sun are really small in size and compact as reported in previous studies, our result may suggest a "downsizing" scenario, whereby the most massive ETGs reach their final structure earlier and faster than lower mass ones. However, simulating galaxies with morphological properties fixed to those of local ETGs with the same stellar mass show that the few compact galaxies that we still recover in our sample can be understood in term of fluctuations due to noise preventing the recovery of the extended low surface brightness halos in the light profile. Such halos, typical of Sersic profiles, extending even up to 40 kpc, are indeed seen in our sample.Comment: 9 pages, 7 figures, accepted by MNRA

    The central dark matter content of early-type galaxies: scaling relations and connections with star formation histories

    Full text link
    We examine correlations between the masses, sizes, and star formation histories for a large sample of low-redshift early-type galaxies, using a simple suite of dynamical and stellar populations models. We confirm an anti-correlation between size and stellar age, and survey for trends with the central content of dark matter (DM). An average relation between central DM density and galaxy size of ~ Reff^-2 provides the first clear indication of cuspy DM haloes in these galaxies -- akin to standard LCDM haloes that have undergone adiabatic contraction. The DM density scales with galaxy mass as expected, deviating from suggestions of a universal halo profile for dwarf and late-type galaxies. We introduce a new fundamental constraint on galaxy formation by finding that the central DM fraction decreases with stellar age. This result is only partially explained by the size-age dependencies, and the residual trend is in the opposite direction to basic DM halo expectations. Therefore we suggest that there may be a connection between age and halo contraction, and that galaxies forming earlier had stronger baryonic feedback which expanded their haloes, or else lumpier baryonic accretion that avoided halo contraction. An alternative explanation is a lighter initial mass function for older stellar populations.Comment: 24 pages, 23 figures. MNRAS, submitted with minor modifications following referee report

    Multifrequency Studies of the Peculiar Quasar 4C +21.35 During the 2010 Flaring Activity

    Get PDF
    The discovery of Very High Energy (VHE; E > 100 GeV) γ-ray emission from 4C +21.35 (PKS 1222+216) by MAGIC on 2010 June 17, triggered by the high activity detected by the Fermi Large Area Telescope (LAT) in high energy (HE) γ-rays, poses intriguing questions on the location of the γ-ray emitting region in this flat spectrum radio quasar (FSRQ). We present multifrequency data of 4C +21.35 collected from radio to VHE during 2010 for investigating the properties of this source and discussing a possible emission model. The first hint of detection at VHE was observed by MAGIC on 2010 May 3, soon after a γ-ray flaring activity detected by Fermi-LAT and peaking on April 29. The same emission mechanism may therefore be responsible for both the HE and VHE emission during the 2010 flaring episodes. Two optical peaks were detected on 2010 April 20 and June 30, close in time but not simultaneous with the two γ-ray peaks, while no clear correlation was observed between the X-ray and γ-ray emission. An increasing flux density was observed in radio and mm bands from the beginning of 2009, in accordance with the increasing γ-ray activity observed by Fermi-LAT, and peaking on 2011 January 27 at 230 GHz. We model the spectral energy distributions (SEDs) of 4C +21.35 for the two periods of the VHE detection and a quiescent state with a one-zone model considering the emission from a very compact region outside the broad line region. The three SEDs could be fit with a combination of synchrotron self-Compton and external Compton emission of seed photons from a dust torus, changing only the electron distribution parameters among the SEDs. The fit of the optical/UV part of the spectrum for 2010 April 29 seems to favor an inner disk radius of 3 gravitational radii, a value expected for a maximally prograde rotating Kerr black hole

    Central mass-to-light ratios and dark matter fractions in early-type galaxies

    Get PDF
    Dynamical studies of local ETGs and the Fundamental Plane point to a strong dependence of M/L ratio on luminosity (and stellar mass) with a relation of the form M/LLγM/L \propto L^{\gamma}. The "tilt" γ\gamma may be caused by various factors, including stellar population properties, IMF, rotational support, luminosity profile non-homology and dark matter (DM) fraction. We evaluate the impact of all these factors using a large uniform dataset of local ETGs from Prugniel & Simien (1997). We take particular care in estimating the stellar masses, using a general star formation history, and comparing different population synthesis models. We find that the stellar M/L contributes little to the tilt. We estimate the total M/L using simple Jeans dynamical models, and find that adopting accurate luminosity profiles is important but does not remove the need for an additional tilt component, which we ascribe to DM. We survey trends of the DM fraction within one effective radius, finding it to be roughly constant for galaxies fainter than MB20.5M_B \sim -20.5, and increasing with luminosity for the brighter galaxies; we detect no significant differences among S0s and fast- and slow-rotating ellipticals. We construct simplified cosmological mass models and find general consistency, where the DM transition point is caused by a change in the relation between luminosity and effective radius. A more refined model with varying galaxy star formation efficiency suggests a transition from total mass profiles (including DM) of faint galaxies distributed similarly to the light, to near-isothermal profiles for the bright galaxies. These conclusions are sensitive to various systematic uncertainties which we investigate in detail, but are consistent with the results of dynamics studies at larger radii.Comment: 21 Pages, 19 figures, accepted for publication on MNRAS. Version including revisions after the referee's report and an updated list of reference

    Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury

    Get PDF
    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis

    Intracellular partitioning of cell organelles and extraneous nanoparticles during mitosis

    Full text link

    MAGIC observation of the GRB 080430 afterglow

    Get PDF
    Context. Gamma-ray bursts are cosmological sources emitting radiation from the gamma-rays to the radio band. Substantial observational efforts have been devoted to the study of gamma-ray bursts during the prompt phase, i.e. the initial burst of high-energy radiation, and during the long-lasting afterglows. In spite of many successes in interpreting these phenomena, there are still several open key questions about the fundamental emission processes, their energetics and the environment. Aims. Independently of specific gamma-ray burst theoretical recipes, spectra in the GeV/TeV range are predicted to be remarkably simple, being satisfactorily modeled with power-laws, and therefore offer a very valuable tool to probe the extragalactic background light distribution. Furthermore, the simple detection of a component at very-high energies, i.e. at similar to 100GeV, would solve the ambiguity about the importance of various possible emission processes, which provide barely distinguishable scenarios at lower energies. Methods. We used the results of the MAGIC telescope observation of the moderate resdhift (z similar to 0.76) GRB 080430 at energies above about 80 GeV, to evaluate the perspective for late-afterglow observations with ground based GeV/TeV telescopes. Results. We obtained an upper limit of F(95% CL) = 5.5 x 10(-11) erg cm(-2) s(-1) for the very-high energy emission of GRB 080430, which cannot set further constraints on the theoretical scenarios proposed for this object also due to the difficulties in modeling the low-energy afterglow. Nonetheless, our observations show that Cherenkov telescopes have already reached the required sensitivity to detect the GeV/TeV emission of GRBs at moderate redshift (z less than or similar to 0.8), provided the observations are carried out at early times, close to the onset of their afterglow phase
    corecore