787 research outputs found

    Single nucleotide polymorphisms of one-carbon metabolism and cancers of the esophagus, stomach, and liver in a Chinese population.

    Get PDF
    One-carbon metabolism (folate metabolism) is considered important in carcinogenesis because of its involvement in DNA synthesis and biological methylation reactions. We investigated the associations of single nucleotide polymorphisms (SNPs) in folate metabolic pathway and the risk of three GI cancers in a population-based case-control study in Taixing City, China, with 218 esophageal cancer cases, 206 stomach cancer cases, 204 liver cancer cases, and 415 healthy population controls. Study participants were interviewed with a standardized questionnaire, and blood samples were collected after the interviews. We genotyped SNPs of the MTHFR, MTR, MTRR, DNMT1, and ALDH2 genes, using PCR-RFLP, SNPlex, or TaqMan assays. To account for multiple comparisons and reduce the chances of false reports, we employed semi-Bayes (SB) shrinkage analysis. After shrinkage and adjusting for potential confounding factors, we found positive associations between MTHFR rs1801133 and stomach cancer (any T versus C/C, SB odds-ratio [SBOR]: 1.79, 95% posterior limits: 1.18, 2.71) and liver cancer (SBOR: 1.51, 95% posterior limits: 0.98, 2.32). There was an inverse association between DNMT1 rs2228612 and esophageal cancer (any G versus A/A, SBOR: 0.60, 95% posterior limits: 0.39, 0.94). In addition, we detected potential heterogeneity across alcohol drinking status for ORs relating MTRR rs1801394 to esophageal (posterior homogeneity P = 0.005) and stomach cancer (posterior homogeneity P = 0.004), and ORs relating MTR rs1805087 to liver cancer (posterior homogeneity P = 0.021). Among non-alcohol drinkers, the variant allele (allele G) of these two SNPs was inversely associated with the risk of these cancers; while a positive association was observed among ever-alcohol drinkers. Our results suggest that genetic polymorphisms related to one-carbon metabolism may be associated with cancers of the esophagus, stomach, and liver. Heterogeneity across alcohol consumption status of the associations between MTR/MTRR polymorphisms and these cancers indicates potential interactions between alcohol drinking and one-carbon metabolic pathway

    Expression of chemokine receptor CXCR4 in nasopharyngeal carcinoma: pattern of expression and correlation with clinical outcome

    Get PDF
    Nasopharyngeal carcinoma (NPC) is a tumor derived from epithelial cells and Epstein-Barr virus infection has been reported to be a cause of this disease. Chemokine receptor CXCR4 was found to be involved in HIV infection and was highly expressed in human malignant breast tumors and the ligand for CXCR4, CXCL12 (SDF-1), exhibited high expression in organs in which breast cancer metastases are often found. The metastatic pattern of NPC is quite similar to that of malignant breast tumors. In this study, we investigated the expression of CXCR4 in nasopharyngeal carcinoma (NPC) tissues by immunohistostaining. We found different staining patterns, which included localization in the nucleus, membrane, cytoplasm or a combination of them. The staining intensity was also variable among samples. The metastatic rates in patients with high compared to low or absent expression was 38.6% versus 19.8%, respectively (P = 0.004). High expression of CXCR4 was associated with poor overall survival (OS = 67.05% versus 82.08%, P = 0.0225). These results suggest that CXCR4 may be involved in the progression of NPC and that a high level of CXCR4 expression could be used as a prognostic factor

    Role of apamin sensitive small conductance calcium-activated potassium currents in long term cardiac memory in rabbits

    Get PDF
    Background Apamin-sensitive small conductance calcium-activated K current (IKAS) is upregulated during ventricular pacing and masks short-term cardiac memory (CM). Objective – To determine the role of IKAS in long-term CM. Methods – CM was created with 3-5 weeks of ventricular pacing and defined by a flat or inverted T-wave off pacing. Epicardial optical mapping was performed in both paced and normal ventricles. Action potential duration (APD80) was determined during RA pacing. Ventricular stability was tested before and after IKAS blockade. Four paced hearts and 4 normal hearts were used for western blotting and histology. Results – There were no significant differences in either the echocardiographic parameters or in fibrosis levels between groups. Apamin induced more APD80 prolongation in CM than in normal ventricles (9.6% [8.8%-10.5%] vs 3.1% [1.9%-4.3%], p<0.001). Apamin significantly lengthend the APD80 in the CM model at late activation sites, indicating significant IKAS upregulation at those sites. The CM model also had altered Ca2+ handling as the 50% Ca2+ transient duration and amplitude were increased at distal sites compared to a proximal site (near the pacing site). After apamin, the CM model had increased VF inducibility (paced vs control, 33/40 (82.5%) vs 7/20 (35%) P<0.001), and longer VF durations (124 vs 26 seconds, P<0.001). Conclusions Chronic ventricular pacing increases Ca2+ transients at late activation sites which activates IKAS to maintain repolarization reserve. IKAS blockade increases VF vulnerability in chronically paced rabbit ventricles

    MVA2023 Small Object Detection Challenge for Spotting Birds: Dataset, Methods, and Results

    Full text link
    Small Object Detection (SOD) is an important machine vision topic because (i) a variety of real-world applications require object detection for distant objects and (ii) SOD is a challenging task due to the noisy, blurred, and less-informative image appearances of small objects. This paper proposes a new SOD dataset consisting of 39,070 images including 137,121 bird instances, which is called the Small Object Detection for Spotting Birds (SOD4SB) dataset. The detail of the challenge with the SOD4SB dataset is introduced in this paper. In total, 223 participants joined this challenge. This paper briefly introduces the award-winning methods. The dataset, the baseline code, and the website for evaluation on the public testset are publicly available.Comment: This paper is included in the proceedings of the 18th International Conference on Machine Vision Applications (MVA2023). It will be officially published at a later date. Project page : https://www.mva-org.jp/mva2023/challeng

    Are Chinese consumers at risk due to exposure to metals in crayfish? A bioaccessibility-adjusted probabilistic risk assessment

    Get PDF
    Freshwater crayfish, the world's third largest crustacean species, has been reported to accumulate high levels of metals, while the current knowledge of potential risk associated with crayfish consumption lags behind that of finfish. We provide the first estimate of human health risk associated with crayfish (Procambarus clarkii) consumption in China, the world's largest producer and consumer of crayfish. We performed Monte Carlo Simulation on a standard risk model parameterized with local data on metal concentrations, bioaccessibility (phi), crayfish consumption rate, and consumer body mass. Bioaccessibility of metals in crayfish was found to be variable (68-95%) and metal-specific, suggesting a potential influence of metal bioaccessibility on effective metal intake. However, sensitivity analysis suggested risk of metals via crayfish consumption was predominantly explained by consumption rate (explaining >92% of total risk estimate variability), rather than metals concentration, bioaccessibility, or body mass. Mean metal concentrations (As, Cd, Cu, Ni, Pb, Se and Zn) in surveyed crayfish samples from 12 provinces in China conformed to national safety standards. However, risk calculation of phi-modified hazard quotient (HQ) and hazard index (HI) suggested that crayfish metals may pose a health risk for very high rate consumers, with a HI of over 24 for the highest rate consumers. Additionally, the phi-modified increased lifetime risk (ILTR) for carcinogenic effects due to the presence of As was above the acceptable level (10(-5)) for both the median (ILTR = 2.5 x 10(-5)) and 90th percentile (ILTR = 1.8 x 10(-4)), highlighting the relatively high risk of As in crayfish. Our results suggest a need to consider crayfish when assessing human dietary exposure to metals and associated health risks, especially for high crayfish-consuming populations, such as in China, USA and Sweden.HZ by the National Natural Science Foundation of China (41273087). LN was supported by European Union Marie Curie Actions, Grant FP People 2010 “IRSES Electroacross” and BG by the SAGE-IGERT Fellowship (US National Science Foundation)

    Necroptosis-associated long noncoding RNAs can predict prognosis and differentiate between cold and hot tumors in ovarian cancer

    Get PDF
    ObjectiveThe mortality rate of ovarian cancer (OC) is the highest among all gynecologic cancers. To predict the prognosis and the efficacy of immunotherapy, we identified new biomarkers.MethodsThe Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression Project (GTEx) databases were used to extract ovarian cancer transcriptomes. By performing the co-expression analysis, we identified necroptosis-associated long noncoding RNAs (lncRNAs). We used the least absolute shrinkage and selection operator (LASSO) to build the risk model. The qRT-PCR assay was conducted to confirm the differential expression of lncRNAs in the ovarian cancer cell line SK-OV-3. Gene Set Enrichment Analysis, Kaplan-Meier analysis, and the nomogram were used to determine the lncRNAs model. Additionally, the risk model was estimated to evaluate the efficacy of immunotherapy and chemotherapy. We classified necroptosis-associated IncRNAs into two clusters to distinguish between cold and hot tumors.ResultsThe model was constructed using six necroptosis-associated lncRNAs. The calibration plots from the model showed good consistency with the prognostic predictions. The overall survival of one, three, and five-year areas under the ROC curve (AUC) was 0.691, 0.678, and 0.691, respectively. There were significant differences in the IC50 between the risk groups, which could serve as a guide to systemic treatment. The results of the qRT-PCR assay showed that AL928654.1, AL133371.2, AC007991.4, and LINC00996 were significantly higher in the SK-OV-3 cell line than in the Iose-80 cell line (P &lt; 0.05). The clusters could be applied to differentiate between cold and hot tumors more accurately and assist in accurate mediation. Cluster 2 was more vulnerable to immunotherapies and was identified as the hot tumor.ConclusionNecroptosis-associated lncRNAs are reliable predictors of prognosis and can provide a treatment strategy by screening for hot tumors

    Enzymatic Determination of Diglyceride Using an Iridium Nano-Particle Based Single Use, Disposable Biosensor

    Get PDF
    A single use, disposable iridium-nano particle contained biosensor had been developed for the determination of diglyceride (DG). In this study hydrogen peroxide, formed through the enzymatic breakdown of DG via lipase, glycerol kinase and glycerol 3-phosphate oxidase, was electrochemically oxidized at an applied potential of +0.5 V versus the Ag/AgCl reference electrode. The oxidation current was then used to quantify the diglyceride concentration. Optimum enzyme concentrations and the surfactant loading used were established for successful sensor response. Good linear performance was observed over a DG concentration range of 0 to 25 μM in phosphate buffer and bovine serum media

    Nernst effect of the new iron-based superconductor LaO1x_{1-x}Fx_{x}FeAs

    Full text link
    We report the first Nernst effect measurement on the new iron-based superconductor LaO1x_{1-x}Fx_{x}FeAs (x=0.1)(x=0.1). In the normal state, the Nernst signal is negative and very small. Below TcT_{c} a large positive peak caused by vortex motion is observed. The flux flowing regime is quite large compared to conventional type-II superconductors. However, a clear deviation of the Nernst signal from normal state background and an anomalous depression of off-diagonal thermoelectric current in the normal state between TcT_{c} and 50 K are observed. We propose that this anomaly in the normal state Nernst effect could correlate with the SDW fluctuations.Comment: 8 pages, 4 figures; Latex file changed, references adde

    Thermal Conductivity of Carbon Nanotubes and their Polymer Nanocomposites: A Review

    Get PDF
    Thermally conductive polymer composites offer new possibilities for replacing metal parts in several applications, including power electronics, electric motors and generators, heat exchangers, etc., thanks to the polymer advantages such as light weight, corrosion resistance and ease of processing. Current interest to improve the thermal conductivity of polymers is focused on the selective addition of nanofillers with high thermal conductivity. Unusually high thermal conductivity makes carbon nanotube (CNT) the best promising candidate material for thermally conductive composites. However, the thermal conductivities of polymer/CNT nanocomposites are relatively low compared with expectations from the intrinsic thermal conductivity of CNTs. The challenge primarily comes from the large interfacial thermal resistance between the CNT and the surrounding polymer matrix, which hinders the transfer of phonon dominating heat conduction in polymer and CNT. This article reviews the status of worldwide research in the thermal conductivity of CNTs and their polymer nanocomposites. The dependence of thermal conductivity of nanotubes on the atomic structure, the tube size, the morphology, the defect and the purification is reviewed. The roles of particle/polymer and particle/particle interfaces on the thermal conductivity of polymer/CNT nanocomposites are discussed in detail, as well as the relationship between the thermal conductivity and the micro- and nano-structure of the composite
    corecore