4,502 research outputs found

    Very Long Baseline Array Imaging of Type-2 Seyferts with Double-Peaked Narrow Emission Lines: Searches for Sub-kpc Dual AGNs and Jet-Powered Outflows

    Full text link
    This paper presents Very Long Baseline Array (VLBA) observations of 13 double-peaked [O III] emission-line type-2 Active Galactic Nuclei (AGNs) at redshifts 0.06 < z < 0.41 (with a median redshift of z~0.15) identified in the Sloan Digital Sky Survey. Such double-peaked emission-line objects may result from jets or outflows from the central engine or from a dual AGN. The VLBA provides an angular resolution of <~10 pc at the distance of many of these galaxies, sufficient to resolve the radio emission from extremely close dual AGNs and to contribute to understanding the origin of double-peaked [O III] emission lines. Of the 13 galaxies observed at 3.6 cm (8.4 GHz), we detect six at a 1\sigma\ sensitivity level of ~0.15 mJy/beam, two of which show clear jet structures on scales ranging from a few milliarcseconds to tens of milliarcseconds (corresponding to a few pc to tens of pc at a median redshift of 0.15). We suggest that radio-loud double-peaked emission-line type-2 AGNs may be indicative of jet produced structures, but a larger sample of double-peaked [O III] AGNs with high angular resolution radio observations will be required to confirm this suggestion.Comment: 14 pages, 7 figures; ApJ in pres

    Packing Hamilton Cycles Online

    Full text link
    It is known that w.h.p. the hitting time τ2σ\tau_{2\sigma} for the random graph process to have minimum degree 2σ2\sigma coincides with the hitting time for σ\sigma edge disjoint Hamilton cycles. In this paper we prove an online version of this property. We show that, for a fixed integer σ≥2\sigma\geq 2, if random edges of KnK_n are presented one by one then w.h.p. it is possible to color the edges online with σ\sigma colors so that at time τ2σ\tau_{2\sigma}, each color class is Hamiltonian.Comment: Minor change

    Addressing the needs of traumatic brain injury with clinical proteomics.

    Get PDF
    BackgroundNeurotrauma or injuries to the central nervous system (CNS) are a serious public health problem worldwide. Approximately 75% of all traumatic brain injuries (TBIs) are concussions or other mild TBI (mTBI) forms. Evaluation of concussion injury today is limited to an assessment of behavioral symptoms, often with delay and subject to motivation. Hence, there is an urgent need for an accurate chemical measure in biofluids to serve as a diagnostic tool for invisible brain wounds, to monitor severe patient trajectories, and to predict survival chances. Although a number of neurotrauma marker candidates have been reported, the broad spectrum of TBI limits the significance of small cohort studies. Specificity and sensitivity issues compound the development of a conclusive diagnostic assay, especially for concussion patients. Thus, the neurotrauma field currently has no diagnostic biofluid test in clinical use.ContentWe discuss the challenges of discovering new and validating identified neurotrauma marker candidates using proteomics-based strategies, including targeting, selection strategies and the application of mass spectrometry (MS) technologies and their potential impact to the neurotrauma field.SummaryMany studies use TBI marker candidates based on literature reports, yet progress in genomics and proteomics have started to provide neurotrauma protein profiles. Choosing meaningful marker candidates from such 'long lists' is still pending, as only few can be taken through the process of preclinical verification and large scale translational validation. Quantitative mass spectrometry targeting specific molecules rather than random sampling of the whole proteome, e.g., multiple reaction monitoring (MRM), offers an efficient and effective means to multiplex the measurement of several candidates in patient samples, thereby omitting the need for antibodies prior to clinical assay design. Sample preparation challenges specific to TBI are addressed. A tailored selection strategy combined with a multiplex screening approach is helping to arrive at diagnostically suitable candidates for clinical assay development. A surrogate marker test will be instrumental for critical decisions of TBI patient care and protection of concussion victims from repeated exposures that could result in lasting neurological deficits

    N-Acetyl and Glutamatergic Neurometabolites in Perisylvian Brain Regions of Methamphetamine Users.

    Get PDF
    Background:Methamphetamine induces neuronal N-acetyl-aspartate synthesis in preclinical studies. In a preliminary human proton magnetic resonance spectroscopic imaging investigation, we also observed that N-acetyl-aspartate+N-acetyl-aspartyl-glutamate in right inferior frontal cortex correlated with years of heavy methamphetamine abuse. In the same brain region, glutamate+glutamine is lower in methamphetamine users than in controls and is negatively correlated with depression. N-acetyl and glutamatergic neurochemistries therefore merit further investigation in methamphetamine abuse and the associated mood symptoms. Methods:Magnetic resonance spectroscopic imaging was used to measure N-acetyl-aspartate+N-acetyl-aspartyl-glutamate and glutamate+glutamine in bilateral inferior frontal cortex and insula, a neighboring perisylvian region affected by methamphetamine, of 45 abstinent methamphetamine-dependent and 45 healthy control participants. Regional neurometabolite levels were tested for group differences and associations with duration of heavy methamphetamine use, depressive symptoms, and state anxiety. Results:In right inferior frontal cortex, N-acetyl-aspartate+N-acetyl-aspartyl-glutamate correlated with years of heavy methamphetamine use (r = +0.45); glutamate+glutamine was lower in methamphetamine users than in controls (9.3%) and correlated negatively with depressive symptoms (r = -0.44). In left insula, N-acetyl-aspartate+N-acetyl-aspartyl-glutamate was 9.1% higher in methamphetamine users than controls. In right insula, glutamate+glutamine was 12.3% lower in methamphetamine users than controls and correlated negatively with depressive symptoms (r = -0.51) and state anxiety (r = -0.47). Conclusions:The inferior frontal cortex and insula show methamphetamine-related abnormalities, consistent with prior observations of increased cortical N-acetyl-aspartate in methamphetamine-exposed animal models and associations between cortical glutamate and mood in human methamphetamine users

    The Analysis of the Major Determinants of Foreign Direct Investment: Case of Tanzania

    Get PDF
    This paper analyzes the determinants of foreign direct investment in Tanzania. In this paper the Ordinary least square (OLS) estimation technique has been used to analyze the relationship between foreign direct investment and its determinants with the help of the E-views 7.1 software. The result shows that the market size, infrastructure development and natural resources availability are the major determinants of foreign direct investment inflow to Tanzania. Therefore the main recommendations are: firstly Tanzania government need to make more effort in the expansion of the market that will attract more FDI ; secondly investing more on the infrastructure development hence encouraging more FDI to the country: Lastly the results found the natural resources availability to be significant but unexpectedly had negative sign contrary to our hypothesis which may imply that the inadequate of natural resources reduces FDI inflow to the country hence more exploration of natural resources is necessary to ensure its availability for example the new recent massive discovery of gas in the country might have a big impact on attracting FDI in the near future. Keywords: Foreign direct investment (FDI), Ordinary Least Square (OLS), unit root, Natural resources Availability (NRA)
    • …
    corecore