85 research outputs found

    PreConfig: A Pretrained Model for Automating Network Configuration

    Full text link
    Manual network configuration automation (NCA) tools face significant challenges in versatility and flexibility due to their reliance on extensive domain expertise and manual design, limiting their adaptability to diverse scenarios and complex application needs. This paper introduces PreConfig, an innovative NCA tool that leverages a pretrained language model for automating network configuration tasks. PreConfig is designed to address the complexity and variety of NCA tasks by framing them as text-to-text transformation problems, thus unifying the tasks of configuration generation, translation, and analysis under a single, versatile model. Our approach overcomes existing tools' limitations by utilizing advances in natural language processing to automatically comprehend and generate network configurations without extensive manual re-engineering. We confront the challenges of integrating domain-specific knowledge into pretrained models and the scarcity of supervision data in the network configuration field. Our solution involves constructing a specialized corpus and further pretraining on network configuration data, coupled with a novel data mining technique for generating task supervision data. The proposed model demonstrates robustness in configuration generation, translation, and analysis, outperforming conventional tools in handling complex networking environments. The experimental results validate the effectiveness of PreConfig, establishing a new direction for automating network configuration tasks with pretrained language models

    Federated Unlearning for Human Activity Recognition

    Full text link
    The rapid evolution of Internet of Things (IoT) technology has spurred the widespread adoption of Human Activity Recognition (HAR) in various daily life domains. Federated Learning (FL) is frequently utilized to build a global HAR model by aggregating user contributions without transmitting raw individual data. Despite substantial progress in user privacy protection with FL, challenges persist. Regulations like the General Data Protection Regulation (GDPR) empower users to request data removal, raising a new query in FL: How can a HAR client request data removal without compromising other clients' privacy? In response, we propose a lightweight machine unlearning method for refining the FL HAR model by selectively removing a portion of a client's training data. Our method employs a third-party dataset unrelated to model training. Using KL divergence as a loss function for fine-tuning, we aim to align the predicted probability distribution on forgotten data with the third-party dataset. Additionally, we introduce a membership inference evaluation method to assess unlearning effectiveness. Experimental results across diverse datasets show our method achieves unlearning accuracy comparable to \textit{retraining} methods, resulting in speedups ranging from hundreds to thousands

    Personality-affected Emotion Generation in Dialog Systems

    Full text link
    Generating appropriate emotions for responses is essential for dialog systems to provide human-like interaction in various application scenarios. Most previous dialog systems tried to achieve this goal by learning empathetic manners from anonymous conversational data. However, emotional responses generated by those methods may be inconsistent, which will decrease user engagement and service quality. Psychological findings suggest that the emotional expressions of humans are rooted in personality traits. Therefore, we propose a new task, Personality-affected Emotion Generation, to generate emotion based on the personality given to the dialog system and further investigate a solution through the personality-affected mood transition. Specifically, we first construct a daily dialog dataset, Personality EmotionLines Dataset (PELD), with emotion and personality annotations. Subsequently, we analyze the challenges in this task, i.e., (1) heterogeneously integrating personality and emotional factors and (2) extracting multi-granularity emotional information in the dialog context. Finally, we propose to model the personality as the transition weight by simulating the mood transition process in the dialog system and solve the challenges above. We conduct extensive experiments on PELD for evaluation. Results suggest that by adopting our method, the emotion generation performance is improved by 13% in macro-F1 and 5% in weighted-F1 from the BERT-base model.Comment: Accepted by ACM Transactions on Information System

    BAGEL: Backdoor Attacks against Federated Contrastive Learning

    Full text link
    Federated Contrastive Learning (FCL) is an emerging privacy-preserving paradigm in distributed learning for unlabeled data. In FCL, distributed parties collaboratively learn a global encoder with unlabeled data, and the global encoder could be widely used as a feature extractor to build models for many downstream tasks. However, FCL is also vulnerable to many security threats (e.g., backdoor attacks) due to its distributed nature, which are seldom investigated in existing solutions. In this paper, we study the backdoor attack against FCL as a pioneer research, to illustrate how backdoor attacks on distributed local clients act on downstream tasks. Specifically, in our system, malicious clients can successfully inject a backdoor into the global encoder by uploading poisoned local updates, thus downstream models built with this global encoder will also inherit the backdoor. We also investigate how to inject backdoors into multiple downstream models, in terms of two different backdoor attacks, namely the \textit{centralized attack} and the \textit{decentralized attack}. Experiment results show that both the centralized and the decentralized attacks can inject backdoors into downstream models effectively with high attack success rates. Finally, we evaluate two defense methods against our proposed backdoor attacks in FCL, which indicates that the decentralized backdoor attack is more stealthy and harder to defend

    Prompting Explicit and Implicit Knowledge for Multi-hop Question Answering Based on Human Reading Process

    Get PDF
    Pre-trained language models (PLMs) leverage chains-of-thought (CoT) to simulate human reasoning and inference processes, achieving proficient performance in multi-hop QA. However, a gap persists between PLMs’ reasoning abilities and those of humans when tackling complex problems. Psychological studies suggest a vital connection between explicit information in input passages and human prior knowledge during reading. Nevertheless, current research has given less attention to linking input passages and PLMs’ pre-training-based knowledge derived from human reading processes. In this study, we introduce a prompting explicit and implicit knowledge (PEI) framework, which uses prompts to connect explicit and implicit knowledge, aligning with human reading process for multi-hop QA. We consider the input passages as explicit knowledge, using it to elicit implicit knowledge through unified prompt reasoning. Additionally, our model incorporates type-specific reasoning via prompts, a form of implicit knowledge. Experimental results show that PEI performs comparably to the state-of-the-art on HotpotQA. Ablation studies confirm the effectiveness of our model in bridging and incorporating explicit and implicit knowledge

    OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge Collaborative AutoML System

    Full text link
    Automated machine learning (AutoML) seeks to build ML models with minimal human effort. While considerable research has been conducted in the area of AutoML in general, aiming to take humans out of the loop when building artificial intelligence (AI) applications, scant literature has focused on how AutoML works well in open-environment scenarios such as the process of training and updating large models, industrial supply chains or the industrial metaverse, where people often face open-loop problems during the search process: they must continuously collect data, update data and models, satisfy the requirements of the development and deployment environment, support massive devices, modify evaluation metrics, etc. Addressing the open-environment issue with pure data-driven approaches requires considerable data, computing resources, and effort from dedicated data engineers, making current AutoML systems and platforms inefficient and computationally intractable. Human-computer interaction is a practical and feasible way to tackle the problem of open-environment AI. In this paper, we introduce OmniForce, a human-centered AutoML (HAML) system that yields both human-assisted ML and ML-assisted human techniques, to put an AutoML system into practice and build adaptive AI in open-environment scenarios. Specifically, we present OmniForce in terms of ML version management; pipeline-driven development and deployment collaborations; a flexible search strategy framework; and widely provisioned and crowdsourced application algorithms, including large models. Furthermore, the (large) models constructed by OmniForce can be automatically turned into remote services in a few minutes; this process is dubbed model as a service (MaaS). Experimental results obtained in multiple search spaces and real-world use cases demonstrate the efficacy and efficiency of OmniForce

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Optimization Design and Comprehensive Performance Analysis of BFPC Gantry Machine Framework Components

    No full text
    corecore