4,764 research outputs found
Theoretical and lidar studies of the density response of the mesospheric sodium layer to gravity wave perturbations
The density response of atmospheric layers to gravity waves is developed in two forms, an exact solution and a perturbation series solution. The degree of nonlinearity in the layer density response is described by the series solution whereas the exact solution gives insight into the nature of the responses. Density perturbation in an atmospheric layer are shown to be substantially greater than the atmospheric density perturbation associated with the propagation of a gravity wave. Because of the density gradients present in atmospheric layers, interesting effects were observed such as a phase reversal in the linear layer response which occurs near the layer peak. Once the layer response is understood, the sodium layer can be used as a tracer of atmospheric wave motions. A two dimensional digital signal processing technique was developed. Both spatial and temporal filtering are utilized to enhance the resolution by decreasing shot noise by more han 10 dB. Many of the features associated with a layer density response to gravity waves were observed in high resolution density profiles of the mesospheric sodium layer. These include nonlinearities as well as the phase reversal in the linear layer response
Operating manual for the RRL 8 channel data logger
A data collection device which takes measurements from external sensors at user specified time intervals is described. Three sensor ports are dedicated to temperature, air pressure, and dew point. Five general purpose sensor ports are provided. The user specifies when the measurements are recorded as well as when the information is read or stored in a minicomputer or a paper tape
Surprisingly Little O VI Emission Arises in the Local Bubble
This paper reports the first study of the O VI resonance line emission (1032,
1038 Angstroms) originating in the Local Bubble (or Local Hot Bubble)
surrounding the solar neighborhood. In spite of the fact that O VI absorption
within the Local Bubble has been observed, no resonance line emission was
detected during our 230 ksec Far Ultraviolet Spectroscopic Explorer observation
toward a ``shadowing'' filament in the southern Galactic hemisphere. As a
result, tight 2 sigma upper limits are set on the intensities in the 1032 and
1038 Angstrom emission lines: 500 and 530 photons cm^{-2} s^{-1} sr^{-1},
respectively. These values place strict constraints on models and simulations.
They suggest that the O VI-bearing plasma and the X-ray emissive plasma reside
in distinct regions of the Local Bubble and are not mixed in a single plasma,
whether in equilibrium with T ~ 10^6 K or highly overionized with T ~ 4 to 6 x
10^4 K. If the line of sight intersects multiple cool clouds within the Local
Bubble, then the results also suggest that hot/cool transition zones differ
from those in current simulations. With these intensity upper limits, we
establish limits on the electron density, thermal pressure, pathlength, and
cooling timescale of the O VI-bearing plasma in the Local Bubble. Furthermore,
the intensity of O VI resonance line doublet photons originating in the
Galactic thick disk and halo is determined (3500 to 4300 photons cm^{-2} s^{-1}
sr^{-1}), and the electron density, thermal pressure, pathlength, and cooling
timescale of its O VI-bearing plasma are calculated. The pressure in the
Galactic halo's O VI-bearing plasma (3100 to 3800 K cm^{-3}) agrees with model
predictions for the total pressure in the thick disk/lower halo. We also report
the results of searches for other emission lines.Comment: accepted by ApJ, scheduled for May 2003, replacement astro-ph
submission corrects typos and grammatical errors in original versio
Relationship of Sorghum kernel size to physiochemical, milling, pasting, and cooking properties
Effects of kernel size on grain sorghum [Sorghum bicolor (L.) Moench] quality were studied in an experiment designed to separate effects of kernel size from seedlot. The study utilized three sieve fractions of varying kernel diameter (\u3e3.35, \u3e2.80 and \u3e2.36 mm) from six seedlots. Chemical composition, physical characteristics, milling characteristics, pasting properties, and cooking qualities were determined for each kernel size fraction. Large kernels lost less relative mass during 1 min of decortication, were higher in protein concentration, and lower in ash. Milling yields were higher from large kernels, and flour from large kernels had higher water absorbance, brighter white color, and larger particle size. Kernel size effects on Rapid Visco Analyzer (RVA) properties were not consistent. These results suggest that within the sorghum seedlots studied, an increase in kernel size is associated with an increase in sorghum quality as defined by the parameters measured in this study
- …