338 research outputs found
Collision Avoidance for UAVs Using Optic Flow Measurement with Line of Sight Rate Equalization and Looming
A series of simplified scenarios is investigated whereby an optical flow balancing guidance law is used to avoid obstacles by steering an air vehicle between fixed objects/obstacles. These obstacles are registered as specific points that can be representative of features in a scene. The obstacles appear in the field of view of a single forward looking camera. First a 2-D analysis is presented where the rate of the line of sight from the vehicle to each of the obstacles to be avoided is measured. The analysis proceeds by initially using no field of view (FOV) limitations, then applying FOV restrictions, and adding features or obstacles in the scene. These analyses show that using a guidance law that equalizes the line of sight rates with no FOV limitations, actually results in the vehicle being steered into one of the objects for all initial conditions. The research next develops an obstacle avoidance strategy based on equilibrating the optic flow generated by the obstacles and presents an analysis that leads to a different conclusion in which balancing the optic flows does avoid the obstacles. The paper then describes a set of guidance methods that with real FOV limitations create a favorable result. Finally, the looming of an object in the camera\u27s FOV can be measured and used for synthesizing a collision avoidance guidance law. For the simple 2-D case, looming is quantified as an increase in LOS between two features on a wall in front of the air vehicle. The 2-D guidance law for equalizing the optic flow and looming detection is then extended into the 3-D case. Then a set of 3-D scenarios are further explored using a decoupled two channel approach. In addition, a comparison of two image segmentation techniques that are used to find optic flow vectors is presented
Cobalt-Porphyrin Catalyzed Electrochemical Reduction of Carbon Dioxide in Water II: Mechanism from First Principles
We apply first principles computational techniques to analyze the
two-electron, multi-step, electrochemical reduction of CO2 to CO in water using
cobalt porphyrin as a catalyst. Density Functional Theory calculations with
hybrid functionals and dielectric continuum solvation are used to determine the
steps at which electrons are added. This information is corroborated with ab
initio molecular dynamics simulations in an explicit aqueous environment which
reveal the critical role of water in stabilizing a key intermediate formed by
CO2 bound to cobalt. Using potential of mean force calculations, the
intermediate is found to spontaneously accept a proton to form a carboxylate
acid group at pH<9.0, and the subsequent cleavage of a C-OH bond to form CO is
exothermic and associated with a small free energy barrier. These predictions
suggest that the proposed reaction mechanism is viable if electron transfer to
the catalyst is sufficiently fast. The variation in cobalt ion charge and spin
states during bond breaking, DFT+U treatment of cobalt 3d orbitals, and the
need for computing electrochemical potentials are emphasized.Comment: 33 pages, 7 figure
Recommended from our members
Designed supramolecular assemblies for biosensors and photoactive devices. LDRD final report
The objective of this project is the development of a new class of supramolecular assemblies for applications in biosensors and biodevices. The supramolecular assemblies are based on membranes and Langmuir-Blodgett (LB) films composed of naturally-occurring or synthetic lipids, which contain electrically and/or photochemically active components. The LB films are deposited onto electrically-active materials (metal, semiconductors). The active components film components (lipo-porphyrins) at the surface function as molecular recognition sites for sensing proteins and other biomolecules, and the porphyrins and other components (e.g., fullerenes) incorporated into the films serve as photocatalysts and vectorial electron-transport agents. Computer-aided molecular design (CAMD) methods are used to tailor the structure of these film components to optimize function. Molecular modeling is also used to predict the location, orientation, and motion of these molecular components within the films. The result is a variety of extended, self-assembled molecular structures that serve as devices for sensing proteins and biochemicals or as other bioelectronic devices
Recommended from our members
Fuel cell applications for novel metalloporphyrin catalysts
This project utilized Computer-Aided Molecular Design (CAMD) to develop a new class of metalloporphyrin materials for use as catalysts for two fuel cell reactions. The first reaction is the reduction of oxygen at the fuel cell cathode, and this reaction was the main focus of the research. The second reaction we attempted to catalyze was the oxidation of methanol at the anode. Two classes of novel metalloporphyrins were developed. The first class comprised the dodecaphenylporphyrins whose steric bulk forces them into a non-planar geometry having a pocket where oxygen or methanol is more tightly bound to the porphyrin than it is in the case of planar porphyrins. Significant improvements in the catalytic reduction of oxygen by the dodecaphenyl porphyrins were measured in electrochemical cells. The dodecaphenylporphyrins were further modified by fluorinating the peripheral phenyl groups to varying degrees. The fluorination strongly affected their redox potential, but no effect on their catalytic activity towards oxygen was observed. The second class of porphyrin catalysts was a series of hydrogen-bonding porphyrins whose interaction with oxygen is enhanced. Enhancements in the interaction of oxygen with the porphyrins having hydrogen bonding groups were observed spectroscopically. Computer modeling was performed using Molecular Simulations new CERIUS2 Version 1.6 and a research version of POLYGRAF from Bill Goddard`s research group at the California Institute of Technology. We reoptimized the force field because of an error that was in POLYGRAF and corrected a problem in treatment of the metal in early versions of the program. This improved force field was reported in a J. Am. Chem. Soc. manuscript. Experimental measurements made on the newly developed catalysts included the electrochemical testing in a fuel cell configuration and spectroscopic measurements (UV-Vis, Raman and XPS) to characterize the catalysts
Recommended from our members
Novel metalloporphyrin catalysts for the oxidation of hydrocarbons
Work was done for developing biomimetic oxidation catalysts. Two classes of metalloporphyrin catalysts were studied. The first class of catalysts studied were a novel series of highly substituted metalloporphyrins, the fluorinated iron dodecaphenylporphyrins. These homogeneous metalloporphyrin catalysts were screened for activity as catalysts in the oxidation of hydrocarbons by dioxygen. Results are discussed with respect to catalyst structural features. The second type of catalysts studied were heterogeneous catalysts consisting of metalloporphyrins applied to inorganic supports. Preliminary catalytic testing results with these materials are presented
Recommended from our members
LDRD final report on adaptive-responsive nanostructures for sensing applications.
Functional organic nanostructures such as well-formed tubes or fibers that can easily be fabricated into electronic and photonic devices are needed in many applications. Especially desirable from a national security standpoint are nanostructures that have enhanced sensitivity for the detection of chemicals and biological (CB) agents and other environmental stimuli. We recently discovered the first class of highly responsive and adaptive porphyrin-based nanostructures that may satisfy these requirements. These novel porphyrin nanostructures, which are formed by ionic self-assembly of two oppositely charged porphyrins, may function as conductors, semiconductors, or photoconductors, and they have additional properties that make them suitable for device fabrication (e.g., as ultrasensitive colorimetric CB microsensors). Preliminary studies with porphyrin nanotubes have shown that these nanostructures have novel optical and electronic properties, including strong resonant light scattering, quenched fluorescence, and electrical conductivity. In addition, they are photochemically active and capable of light-harvesting and photosynthesis; they may also have nonlinear optical properties. Remarkably, the nanotubes and potentially other porphyrin nanostructure are mechanically responsive and adaptive (e.g., the rigidity of the micrometers-long nanotubes is altered by light, ultrasound, or chemicals) and they self-heal upon removal the environmental stimulus. Given the tremendous degree of structural variation possible in the porphyrin subunits, additional types of nanostructures and greater control over their morphology can be anticipated. Molecular modification also provides a means of controlling their electronic, photonic, and other functional properties. In this work, we have greatly broadened the range of ionic porphyrin nanostructures that can be made, and determined the optical and responsivity properties of the nanotubes and other porphyrin nanostructures. We have also explored means for controlling their morphology, size, and placement on surfaces. The research proposed will lay the groundwork for the use of these remarkable porphyrin nanostructures in micro- and nanoscale devices, by providing a more detailed understanding of their molecular structure and the factors that control their structural, photophysical, and chemical properties
Tetracycloalkenyl-meso-tetraphenylporphyrins as Models for the Effect of Non-planarity on the Light Absorption Properties of Photosynthetic Chromophores
As the size of the cycloalkenyl ring in synthetic C5-C7 tetracycloalkenyl-meso-tetraphenylporphyrins (TCnTPP) is increased the porphyrin core changes from planar to non-planar, showing that porphyrins with well-defined degrees of ruffling can be synthesized for use in systematic studies to determine the effects of non-planarity
Prevalence and Correlates of Food Insecurity Among U.S. College Students: A Multi-institutional Study
Background: College students may be vulnerable to food insecurity due to limited financial resources, decreased buying power of federal aid, and rising costs of tuition, housing, and food. This study assessed the prevalence of food insecurity and its sociodemographic, health, academic, and food pantry correlates among first-year college students in the United States. Methods: A cross-sectional study was conducted among first-year students (n = 855) across eight U.S. universities. Food security status was assessed using the U.S. Department of Agriculture Adult Food Security Survey Module. Cohen’s Perceived Stress Scale, Pittsburgh Sleep Quality Index, and Eating Attitudes Test-26 were used to assess perceived stress, sleep quality, and disordered eating behaviors, respectively. Participants self-reported their grade point average (GPA) and completed questions related to meal plan enrollment and utilization of on-campus food pantries. Results: Of participating students, 19% were food-insecure, and an additional 25.3% were at risk of food insecurity. Students who identified as a racial minority, lived off-campus, received a Pell grant, reported a parental education of high school or less, and did not participate in a meal plan were more likely to be food-insecure. Multivariate logistic regression models adjusted for sociodemographic characteristics and meal plan enrollment indicated that food-insecure students had significantly higher odds of poor sleep quality (OR = 2.32, 95% CI: 1.43–3.76), high stress (OR = 4.65, 95% CI: 2.66–8.11), disordered eating behaviors (OR = 2.49, 95% CI: 1.20–4.90), and a GPA \u3c 3.0 (OR = 1.91, 95% CI: 1.19–3.07) compared to food-secure students. Finally, while half of the students (56.4%) with an on-campus pantry were aware of its existence, only 22.2% of food-insecure students endorsed utilizing the pantry for food acquisition. Conclusions: Food insecurity among first-year college students is highly prevalent and has implications for academic performance and health outcomes. Higher education institutions should screen for food insecurity and implement policy and programmatic initiatives to promote a healthier college experience. Campus food pantries may be useful as shortterm relief; however, its limited use by students suggest the need for additional solutions with a rights-based approach to food insecurity. Trial Registration: Retrospectively registered on ClinicalTrials.gov, NCT02941497
Recommended from our members
LDRD final report on nanovehicle light-driven propulsion.
Having demonstrated the possibility of constructing nanoscale metallic vehicular bodies as described in last year's proposal, our goals have been to make uniform preparations of the metallized lipid assemblies and to determine the feasibility of powering these nanostructures with biological motors that are activated and driven by visible light. We desired that the propulsion system be constructed entirely by self-assembly and powered by a photocatalytic process partially already built into the nanovehicle. The nanovehicle we desire to build is composed of both natural biological components (ATPase, kinesin-microtubules) and biomimetic components (platinized liposomes, photosynthetic membrane) as functional units. The vehicle's body was originally envisioned to be composed of a surfactant liposomal bilayer coated with platinum nanoparticles, but instead of the expected nanoparticles we were able to grow dendritic 2-nm thick platinum sheets on the liposomes. Now, we have shown that it is possible to completely enclose the liposomes with sheeting to form porous platinum spheres, which show good structural stability as evidenced by their ability to survive the stresses of electron-microscopy sample preparation. Our goals were to control the synthesis of the platinized liposomes well enough to make uniform preparations of the coated individual liposomes and to develop the propulsion system for these nanovehicles a hydrogen-evolving artificial photosynthetic system in the liposomal bilayer that generates the pH gradient across the membrane that is necessary to drive the synthesis of ATP by ATP-synthase incorporated in the membrane. ATP produced would fuel the molecular motor (kinesin) attached to the vehicle, needing only light, storable ADP, phosphate, and an electron donor to be produced by ATP-synthase in the membrane. These research goals appear to be attainable, but growing the uniform preparations of the liposomes coated with dendritic platinum sheeting, a necessary accomplishment that would simplify the task of incorporating and verifying the photosynthetic function of the nanovehicle membrane, has proved to be difficult. The detailed understanding of the relative locations of surfactant and Pt in the liposomal bodies has also forced a change in the nanovehicle design strategies. Nevertheless, we have found no insurmountable obstacles to making these nanovehicles given a larger and longer term research effort. These nanovehicles could potentially respond to chemical gradients, light intensity, and field gradients, in the same manner that magnetic bacteria navigate. The cargo might include decision-making and guidance components, drugs and other biological and chemical agents, explosives, catalytic reactors, and structural materials
DNA methylation determination by liquid chromatography–tandem mass spectrometry using novel biosynthetic [U-15N]deoxycytidine and [U-15N]methyldeoxycytidine internal standards
Methylation of the promoter CpG regions regulates gene transcription by inhibiting transcription factor binding. Deoxycytidine methylation may regulate cell differentiation, while aberrations in the process may be involved in cancer etiology and the development of birth defects (e.g. neural tube defects). Similarly, nutritional deficiency and certain nutragenomic interactions are associated with DNA hypomethylation. While LC-MS has been used previously to measure percentage genomic deoxycytidine methylation, a lack of a secure source of internal standards and the need for laborious and time-consuming DNA digestion protocols constitute distinct limitations. Here we report a simple and inexpensive protocol for the biosynthesis of internal standards from readily available precursors. Using these biosynthetic stable-isotopic [U-15N]-labeled internal standards, coupled with an improved DNA digestion protocol developed in our lab, we have developed a low-cost, high-throughput (>500 samples in 4 days) assay for measuring deoxycytidine methylation in genomic DNA. Inter- and intraassay variation for the assay (%RSD, n = 6) was <2.5%
- …