282 research outputs found

    Assessment of MRI issues at 3-Tesla for metallic surgical implants: findings applied to 61 additional skin closure staples and vessel ligation clips

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Metallic skin closure staples and vessel ligation clips should be tested at 3-Tesla to characterize MRI issues in order to ensure patient safety. Therefore, metallic surgical implants were assessed at 3-Tesla for magnetic field interactions, MRI-related heating, and artifacts.</p> <p>Methods</p> <p>A skin closure staple (Visistat Skin Stapler, staple, Polytetrafluoroethylene, PTFE, coated 316L/316LVM stainless steel; Teleflex Medical, Durham, NC) and a vessel ligation clip (Hemoclip Traditional, stainless steel; Teleflex Medical, Durham, NC) that represented the largest metallic sizes made from materials with the highest magnetic susceptibilities (i.e., based on material information) among 61 other surgical implants (52 metallic implants, 9 nonmetallic implants) underwent evaluation for magnetic field interactions, MRI-related heating, and artifacts using standardized techniques. MRI-related heating was assessed by placing each implant in a gelled-saline-filled phantom with MRI performed using a transmit/receive RF body coil at an MR system reported, whole body averaged SAR of 2.9-W/kg for 15-min. Artifacts were characterized using T1-weighted, SE and GRE pulse sequences.</p> <p>Results</p> <p>Each surgical implant showed minor magnetic field interactions (20- and 27-degrees, which is acceptable from a safety consideration). Heating was not substantial (highest temperature change, ≤ 1.6°C). Artifacts may create issues if the area of interest is in the same area or close to the respective surgical implant.</p> <p>Conclusions</p> <p>The results demonstrated that it would be acceptable for patients with these metallic surgical implants to undergo MRI at 3-Tesla or less. Because of the materials and dimensions of the surgical implants that underwent testing, these findings pertain to 61 additional similar implants.</p

    Biological effects of exposure to magnetic resonance imaging: an overview

    Get PDF
    The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited

    Magnetic resonance imaging (MRI) scanning for research: the experiences of healthy volunteers and patients with remitted depressive illness

    Get PDF
    We report the findings from a study exploring the experiences of individuals undergoing MRI scanning for research. Semi structured interviews took place before and after scanning with 17 participants; 12 were healthy volunteers and 5 were patients with a diagnosis of remitted depression. Themes of apprehension and curiosity prior to scanning were common in both groups. Patients were often confused about the procedure. Negative feelings were an issue at the outset, characterised by shock related to the physical surroundings, after which positive feelings, for example relaxation, were often experienced, and in the case of patients, learning more about their brain. Written information about imaging was deemed satisfactory; however the ability to ‘experience’ aspects of scanning beforehand was suggested. Scanning may be viewed as a process beginning prior to the procedure itself and involving positive and negative emotions. Increased information, reassurance and a more interactive intervention to reduce anxiety may be beneficial and may improve individuals’ experience of this widely used procedure

    3.0 T cardiovascular magnetic resonance in patients treated with coronary stenting for myocardial infarction: evaluation of short term safety and image quality

    Get PDF
    Purpose To evaluate safety and image quality of cardiovascular magnetic resonance (CMR) at 3.0 T in patients with coronary stents after myocardial infarction (MI), in comparison to the clinical standard at 1.5 T. Methods Twenty-five patients (21 men; 55 ¹ 9 years) with first MI treated with primary stenting, underwent 18 scans at 3.0 T and 18 scans at 1.5 T. Twenty-four scans were performed 4 ¹ 2 days and 12 scans 125 ¹ 23 days after MI. Cine (steady-state free precession) and late gadolinium-enhanced (LGE, segmented inversion-recovery gradient echo) images were acquired. Patient safety and image artifacts were evaluated, and in 16 patients stent position was assessed during repeat catheterization. Additionally, image quality was scored from 1 (poor quality) to 4 (excellent quality). Results There were no clinical events within 30 days of CMR at 3.0 T or 1.5 T, and no stent migration occurred. At 3.0 T, image quality of cine studies was clinically useful in all, but not sufficient for quantitative analysis in 44% of the scans, due to stent (6/18 scans), flow (7/18 scans) and/or dark band artifacts (8/18 scans). Image quality of LGE images at 3.0 T was not sufficient for quantitative analysis in 53%, and not clinically useful in 12%. At 1.5 T, all cine and LGE images were quantitatively analyzable. Conclusion 3.0 T is safe in the acute and chronic phase after MI treated with primary stenting. Although cine imaging at 3.0 T is suitable for clinical use, quantitative analysis and LGE imaging is less reliable than at 1.5 T. Further optimization of pulse sequences at 3.0 T is essential

    Role of pathophysiology of patellofemoral instability in the treatment of spontaneous medial patellofemoral subluxation: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Medial patellar subluxation is usually seen after lateral retinacular release. Spontaneous medial subluxation of the patella is a very rare condition. There are few reports in the literature on the pathophysiology of iatrogenic medial patellar subluxation. To our knowledge, there are no reports of the pathophysiology of non-iatrogenic medial patellar subluxation in the English literature. In this study we present a case of spontaneous medial patellar instability that is more prominent in extension during weight bearing. We also try to define the treatment protocol based on pathophsiology.</p> <p>Case presentation</p> <p>We report the case of a 21-year-old Turkish man with spontaneous medial patellar instability. He had suffered right knee pain, clicking and popping sensation in the affected knee for three months prior to presentation. Clinical examination demonstrated medial patellar subluxation that is more prominent in extension during the weight bearing phase of gait and while standing. Increased medial tilt was observed when the patella was stressed medially. Conventional anterior to posterior, lateral and Merchant radiographs did not reveal any abnormalities. After three months of physical therapy, our patient was still suffering from right knee pain which disturbed his gait pattern. Throughout the surgery, medial patellar translation was tested following the imbrication of lateral structures. He still had a medial patellar translation that was more than 50% of his patellar width. Patellotibial ligament augmentation using an iliotibial band flap was added. When examined after surgery, the alignment of the patella was effectively corrected.</p> <p>Conclusions</p> <p>Chronic imbalance between the strengths of vastus lateralis and vastus medialis results in secondary changes in passive ligamentous structures and causes additional instability. Physical therapy modalities that aim to strengthen the vastus lateralis might be sufficient for the treatment of spontaneous medial instability. There would be no need for any surgical intervention if spontaneous medial instability was recognized before the additional instability occured. If necessary, lateral imbrication followed by lateral patellotibial ligament augmentation can be performed, and these would effectively correct spontaneous medial patellofemoral instability.</p

    Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To demonstrate the applicability of acoustic cardiac triggering (ACT) for imaging of the heart at ultrahigh magnetic fields (7.0 T) by comparing phonocardiogram, conventional vector electrocardiogram (ECG) and traditional pulse oximetry (POX) triggered 2D CINE acquisitions together with (i) a qualitative image quality analysis, (ii) an assessment of the left ventricular function parameter and (iii) an examination of trigger reliability and trigger detection variance derived from the signal waveforms.</p> <p>Results</p> <p>ECG was susceptible to severe distortions at 7.0 T. POX and ACT provided waveforms free of interferences from electromagnetic fields or from magneto-hydrodynamic effects. Frequent R-wave mis-registration occurred in ECG-triggered acquisitions with a failure rate of up to 30% resulting in cardiac motion induced artifacts. ACT and POX triggering produced images free of cardiac motion artefacts. ECG showed a severe jitter in the R-wave detection. POX also showed a trigger jitter of approximately Δt = 72 ms which is equivalent to two cardiac phases. ACT showed a jitter of approximately Δt = 5 ms only. ECG waveforms revealed a standard deviation for the cardiac trigger offset larger than that observed for ACT or POX waveforms.</p> <p>Image quality assessment showed that ACT substantially improved image quality as compared to ECG (image quality score at end-diastole: ECG = 1.7 ± 0.5, ACT = 2.4 ± 0.5, p = 0.04) while the comparison between ECG vs. POX gated acquisitions showed no significant differences in image quality (image quality score: ECG = 1.7 ± 0.5, POX = 2.0 ± 0.5, p = 0.34).</p> <p>Conclusions</p> <p>The applicability of acoustic triggering for cardiac CINE imaging at 7.0 T was demonstrated. ACT's trigger reliability and fidelity are superior to that of ECG and POX. ACT promises to be beneficial for cardiovascular magnetic resonance at ultra-high field strengths including 7.0 T.</p

    Static stretching of the hamstring muscle for injury prevention in football codes: a systematic review

    Get PDF
    Purpose: Hamstring injuries are common among football players. There is still disagreement regarding prevention. The aim of this review is to determine whether static stretching reduces hamstring injuries in football codes. Methods: A systematic literature search was conducted on the online databases PubMed, PEDro, Cochrane, Web of Science, Bisp and Clinical Trial register. Study results were presented descriptively and the quality of the studies assessed were based on Cochrane’s ‘risk of bias’ tool. Results: The review identified 35 studies, including four analysis studies. These studies show deficiencies in the quality of study designs. Conclusion: The study protocols are varied in terms of the length of intervention and follow-up. No RCT studies are available, however, RCT studies should be conducted in the near future
    • …
    corecore