76 research outputs found

    Analytical simulation of two dimensional advection dispersion equation of contaminant transport

    Get PDF
    The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate through the verdoze zone to underground water is considered. We solved the two dimensional advection dispersion equation analytically which is solute transport model without sorption or degradation using change of variable method. We critically reviewed two dimensional equations depicting the transport of contaminant in groundwater and investigate with the help of graphical representation the effect of Peclet number on the concentration of contaminant and established real life interpretation of contaminant transport. Two cases were considered, when Peclet number is less than one and when Peclet number is greater than one. The result obtained revealed that the contaminant concentration increases along x direction and decreases along y direction for both values of peclet number greater than one and less than one. The study has contributed to knowledge through the method utilized to achieve the model analytical solution and the Physical interpretation of Peclet number. From the analysis, we recommend for further studies on the contaminant transport which also depends on the available data, that the extension of advection –dispersion model to three dimensions and comparison of travel time of contaminant transport solution to Kinetic or multi-component mode.Keywords: Contaminant, Seepage Velocity, Aquifer, Advection-dispersion Equation, change of variable method

    Formulation of a mathematical model for the analysis of the emission of carbon dioxide from gaseous fuel using least square method

    Get PDF
    In this paper we formulate a model for the emission of Carbon Dioxide from gaseous fuel in Nigeria. We considered a third degree polynomial model using a least square method using the actual data set of twenty one years on State level Carbon Dioxide emissions in Nigeria from 1994-2014. The residual analysis was used to predict the short and medium term total Carbon Dioxide emissions trend. From the results the state of affairs of Carbon Dioxide Emission for subsequent years was forecast and this will help the Government to take control measures in curtailing the emission of Carbon Dioxide in the country.Keywords: Gaseous fuel, Automobile, Fossil fuels, Pollutants, Carbon Dioxide, Emission

    Modeling and analytical simulation of anterior polymerization in the presence of an inert material

    Get PDF
    The ability to fabricate advanced materials with specific properties efficiently requires a complete understanding of the polymerization kinetics and the effect of several preparative variables such as temperature, monomer and initiator. This paper presents an analytical method for describing anterior polymerization in two adjacent thin layers. Both the initial temperatures and initial monomer and initiator concentrations are assumed to depend on the space variable. We prove the existence and uniqueness of solution of the model by actual solution method. The equations are solved using parameter-expanding method and eigenfunctions expansion technique. The results obtained were discussed. The study shows that the Frank-Kamenetskii number and frequency factors of the two reactions have significant effects on the propagation of the polymerization wave.Keywords: Polymerization, anterior polymerization, polymers, Arrhenius kinetics, parameter-expanding method, eigenfunctions expansion techniqu

    Modeling and analytical simulation of high-temperature gas filtration combustion

    Get PDF
    High temperature filtration in combustion and gasification processes is a highly interdisciplinary field. Thus, particle technology in general has to be supported by elements of physics, chemistry, thermodynamics and heat and mass transfer processes. Presented in this paper is the analytical method for describing hightemperature gas filtration combustion in an inert porous medium. We assume the porous media is highly permeable and both the contact time between the phases and the rate of oxidizer diffusion through the gas stream to the surface of the solid particles where the reaction occurs are not large. Also, we assume that the initial temperatures increase lengthwise. The coupled nonlinear partial differential equations describing the phenomenon have been decoupled using the parameter-expanding method and solved analytically using eigenfunctions expansion technique. The results obtained revealed that the combustion wave is propagated and oxidizer is consumed. A self-oscillating mode of gas filtration combustion was found with variation in the values of interfacial heat transfer.Keywords: Analytical method, filtration combustion, fuel, oxidizer, porous medium, temperatur

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    Search for H→γγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector

    Get PDF
    A search is performed for Higgs bosons produced in association with top quarks using the diphoton decay mode of the Higgs boson. Selection requirements are optimized separately for leptonic and fully hadronic final states from the top quark decays. The dataset used corresponds to an integrated luminosity of 4.5 fb−14.5 fb−1 of proton–proton collisions at a center-of-mass energy of 7 TeV and 20.3 fb−1 at 8 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess over the background prediction is observed and upper limits are set on the tt¯H production cross section. The observed exclusion upper limit at 95% confidence level is 6.7 times the predicted Standard Model cross section value. In addition, limits are set on the strength of the Yukawa coupling between the top quark and the Higgs boson, taking into account the dependence of the tt¯H and tH cross sections as well as the H→γγ branching fraction on the Yukawa coupling. Lower and upper limits at 95% confidence level are set at −1.3 and +8.0 times the Yukawa coupling strength in the Standard Model

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter
    • 

    corecore