636 research outputs found

    Weak compressible magnetohydrodynamic turbulence in the solar corona

    Full text link
    This Letter presents a calculation of the power spectra of weakly turbulent Alfven waves and fast magnetosonic waves ("fast waves") in low-beta plasmas. It is shown that three-wave interactions transfer energy to high-frequency fast waves and, to a lesser extent, high-frequency Alfven waves. MHD turbulence is thus a promising mechanism for producing the high-frequency waves needed to explain the anisotropic heating of minor ions in the solar corona.Comment: 4 pages, 3 figures, accepted, Phys. Rev. Let

    Weakly Turbulent MHD Waves in Compressible Low-Beta Plasmas

    Full text link
    In this Letter, weak turbulence theory is used to investigate interactions among Alfven waves and fast and slow magnetosonic waves in collisionless low-beta plasmas. The wave kinetic equations are derived from the equations of magnetohydrodynamics, and extra terms are then added to model collisionless damping. These equations are used to provide a quantitative description of a variety of nonlinear processes, including "parallel" and "perpendicular" energy cascade, energy transfer between wave types, "phase mixing," and the generation of back-scattered Alfven waves.Comment: Accepted, Physical Review Letter

    Shell-models of RMHD turbulence and the heating of solar coronal loops

    Get PDF
    A simplified non-linear numerical model for the development of incompressible magnetohydrodynamics (MHD) in the presence of a strong magnetic field B0 and stratification, nicknamed Shell-Atm, is presented. In planes orthogonal to the mean field, the non-linear incompressible dynamics is replaced by 2D shell-models for the complex variables u and b, allowing one to reach large Reynolds numbers while at the same time carrying out sufficiently long time integrations to obtain a good statistics at moderate computational cost. The shell-models of different planes are coupled by Alfven waves propagating along B0. The model may be applied to open or closed magnetic field configurations where the axial field dominates and the plasma pressure is low; here we apply it to the specific case of a magnetic loop of the solar corona heated via turbulence driven by photospheric motions, and we use statistics for its analysis. The Alfven waves interact non-linearly and form turbulent spectra in the directions perpendicular and, via propagation, also parallel to the mean field. A heating function is obtained, and is shown to be intermittent; the average heating is consistent with values required for sustaining a hot corona, and is proportional to the aspect ratio of the loop to the power -1.5; characteristic properties of heating events are distributed as power-laws. Cross-correlations show a delay of dissipation compared to energy content.Comment: 12 pages, 16 figures, accepted for publication in Ap

    Scaling law of the plasma turbulence with non conservative fluxes

    Full text link
    It is shown that in the presence of anisotropic kinetic dissipation existence of scale invariant power law spectrum of plasma turbulence is possible. Obtained scale invariant spectrum is not associated with the constant flux of any physical quantity. Application of the model to the high frequency part of the solar wind turbulence is discussed.Comment: Phys Rev E, accepte

    Particle Acceleration by MHD Turbulence

    Full text link
    Recent advances in understanding of magnetohydrodynamic (MHD) turbulence call for revisions in the picture of particle acceleration. We make use of the recently established scaling of slow and fast MHD modes in strong and weak MHD turbulence to provide a systematic study of particle acceleration in magnetic pressure (low-β\beta) and gaseous pressure (high-β\beta) dominated plasmas. We consider the acceleration by large scale compressions in both slow and fast particle diffusion limits. We compare the results with the acceleration rate that arises from resonance scattering and Transit-Time Damping (TTD). We establish that fast modes accelerate particles more efficiently than slow modes. We find that particle acceleration by pitch-angle scattering and TTD dominates acceleration by slow or fast modes when the spatial diffusion rate is small. When the rate of spatial diffusion of particles is high, we establish an enhancement of the efficiency of particle acceleration by slow and fast modes in weak turbulence. We show that highly supersonic turbulence is an efficient agent for particle acceleration. We find that even incompressible turbulence can accelerate particles on the scales comparable with the particle mean free path.Comment: 17 pages, 4 figures, accepted by ApJ; Some sections re-arrange

    Compressible Sub-Alfvenic MHD turbulence in Low-beta Plasmas

    Full text link
    We present a model for compressible sub-Alfvenic isothermal magnetohydrodynamic (MHD) turbulence in low-beta plasmas and numerically test it. We separate MHD fluctuations into 3 distinct families - Alfven, slow, and fast modes. We find that, production of slow and fast modes by Alfvenic turbulence is suppressed. As a result, Alfven modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfven modes. However, fast modes show isotropy and a scaling similar to acoustic turbulence.Comment: 4 pages, 8 figures, Phys. Rev. Lett., in pres

    A nonextensive entropy approach to solar wind intermittency

    Full text link
    The probability distributions (PDFs) of the differences of any physical variable in the intermittent, turbulent interplanetary medium are scale dependent. Strong non-Gaussianity of solar wind fluctuations applies for short time-lag spacecraft observations, corresponding to small-scale spatial separations, whereas for large scales the differences turn into a Gaussian normal distribution. These characteristics were hitherto described in the context of the log-normal, the Castaing distribution or the shell model. On the other hand, a possible explanation for nonlocality in turbulence is offered within the context of nonextensive entropy generalization by a recently introduced bi-kappa distribution, generating through a convolution of a negative-kappa core and positive-kappa halo pronounced non-Gaussian structures. The PDFs of solar wind scalar field differences are computed from WIND and ACE data for different time lags and compared with the characteristics of the theoretical bi-kappa functional, well representing the overall scale dependence of the spatial solar wind intermittency. The observed PDF characteristics for increased spatial scales are manifest in the theoretical distribution functional by enhancing the only tuning parameter κ\kappa, measuring the degree of nonextensivity where the large-scale Gaussian is approached for κ\kappa \to \infty. The nonextensive approach assures for experimental studies of solar wind intermittency independence from influence of a priori model assumptions. It is argued that the intermittency of the turbulent fluctuations should be related physically to the nonextensive character of the interplanetary medium counting for nonlocal interactions via the entropy generalization.Comment: 17 pages, 7 figures, accepted for publication in Astrophys.

    Coronal heating distribution due to low-frequency wave-driven turbulence

    Get PDF
    The heating of the lower solar corona is examined using numerical simulations and theoretical models of magnetohydrodynamic turbulence in open magnetic regions. A turbulent energy cascade to small length scales perpendicular to the mean magnetic field can be sustained by driving with low-frequency Alfven waves reflected from mean density and magnetic field gradients. This mechanism deposits energy efficiently in the lower corona, and we show that the spatial distribution of the heating is determined by the mean density through the Alfven speed profile. This provides a robust heating mechanism that can explain observed high coronal temperatures and accounts for the significant heating (per unit volume) distribution below two solar radius needed in models of the origin of the solar wind. The obtained heating per unit mass on the other hand is much more extended indicating that the heating on a per particle basis persists throughout all the lower coronal region considered here.Comment: 19 pages, 5 figures. Accepted for publication in Ap

    Particle Heating by Alfvenic Turbulence in Hot Accretion Flows

    Get PDF
    Recent work on Alfvenic turbulence by Goldreich & Sridhar (1995; GS) suggests that the energy cascades almost entirely perpendicular to the local magnetic field. As a result, the cyclotron resonance is unimportant in dissipating the turbulent energy. Motivated by the GS cascade, we calculate the linear collisionless dissipation of Alfven waves with frequencies much less than the proton cyclotron frequency, but with perpendicular wavelengths of order the Larmor radius of thermal protons. In plasmas appropriate to hot accretion flows (proton temperature much greater than electron temperature) the dissipated Alfven wave energy primarily heats the protons. For a plasma with \beta \lsim 5, however, where β\beta is the ratio of the gas pressure to the magnetic pressure, the MHD assumptions utilized in the GS analysis break down before most of the energy in Alfven waves is dissipated; how the cascade then proceeds is unclear. Hot accretion flows, such as advection dominated accretion flows (ADAFs), are expected to contain significant levels of MHD turbulence. This work suggests that, for \beta \gsim 5, the Alfvenic component of such turbulence primarily heats the protons. Significant proton heating is required for the viability of ADAF models. We contrast our results on particle heating in ADAFs with recent work by Bisnovatyi-Kogan & Lovelace (1997).Comment: 35 pages (Latex), 4 Figures. Submitted to Ap

    The Milky Way's Kiloparsec Scale Wind: A Hybrid Cosmic-Ray and Thermally Driven Outflow

    Full text link
    We apply a wind model, driven by combined cosmic-ray and thermal-gas pressure, to the Milky Way, and show that the observed Galactic diffuse soft X-ray emission can be better explained by a wind than by previous static gas models. We find that cosmic-ray pressure is essential to driving the observed wind. Having thus defined a "best-fit" model for a Galactic wind, we explore variations in the base parameters and show how the wind's properties vary with changes in gas pressure, cosmic-ray pressure and density. We demonstrate the importance of cosmic rays in launching winds, and the effect cosmic rays have on wind dynamics. In addition, this model adds support to the hypothesis of Breitschwerdt and collaborators that such a wind may help explain the relatively small gradient observed in gamma-ray emission as a function of galactocentric radius.Comment: 14 pages, 11 figures; Accepted to Ap
    corecore