1,731 research outputs found
Asymmetric Early Crust-Building Magmatism on the Lunar Nearside Due to KREEP-Induced Melting Point Depression
The lunar magnesian-suite, or Mg-suite, is a series of ancient plutonic rocks from the lunar crust with ages and compositions indicating that they represent crust-building magmatism occurring immediately after the end of magma ocean crystallization. Samples of the Mg-suite were found at every Apollo landing site except 11 and ubiquitously have geochemical characteristics indicating the involvement of KREEP in their petrogenesis. This observation has led to the suggestion that the presence of the KREEP reservoir under the lunar nearside was responsible for this episode of crust building. The lack of any readily identifiable Mg-suite rocks in meteoritic regolith breccias sourced from outside the Procellarum KREEP Terrane (PKT) seemingly supports this interpretation
The Role of KREEP in the Production of Mg-Suite Magmas and Its Influence on the Extent of Mg-Suite Magmatism in the Lunar Crust
The lunar magnesian-suite, or Mg-suite, is a series of ancient plutonic rocks from the lunar crust. They have received a considerable amount of attention from lunar scientists since their discovery for three primary reasons: 1) their ages and geochemistry indicate they represent pristine magmatic samples that crystallized very soon after the formation of the Moon; 2) their ages often overlap with ages of the ferroan anorthosite (FAN) crust; and 3) planetary-scale processes are needed in formation models to account for their unique geochemical features. Taken as a whole, the Mg-suite samples, as magmatic cumulate rocks, approximate a fractional crystallization sequence in the low-pressure forsterite-anorthite-silica system, and thus these samples are generally thought to be derived from layered mafic intrusions which crystallized very slowly from magmas that intruded the anorthositic crust. However, no direct linkages have been established between different Mg-suite samples based either on field relationships or geochemistry.The model for the origin of the Mg-suite, which best fits the limited available data, is one where Mg-suite magmas form from melting of a hybrid cumulate package consisting of deep mantle dunite, crustal anorthosite, and KREEP (potassium-rare earth elements-phosphorus) at the base of the crust under the Procellarum KREEP Terrane (PKT). In this model, these three LMO (Lunar Magma Ocean) cumulate components are brought into close proximity by the cumulate overturn process. Deep mantle dunitic cumulates with an Mg number of approximately 90 rise to the base of the anorthositic crust due to their buoyancy relative to colder, more dense Fe- and Ti-rich cumulates. This hybridized source rock melts to form Mg-suite magmas, saturated in Mg-rich olivine and anorthitic plagioclase, that have a substantial KREEP component
Examining Metasomatism in Low fO2 Environments: Exploring Sulfidation Reactions in Various Planetary Bodies
Hydrothermal systems are common on Earth in a variety of tectonic environments and at different temperature and pressure conditions. These systems are commonly dominated by H2O, and they are responsible for element transport and the production of ore deposits. Unlike the Earth (fO2~FMQ), many other planetary bodies (e.g., Moon and asteroids) have fO2 environments that are more reduced (IW+/-2), and H2O is not the important solvent responsible for element transport. One example of a texture that could result from element transport and metasomatism, which appears to occur on numerous planetary bodies, is sulfide-silicate intergrowths. These subsolidus assemblages are interpreted to form as a result of sulfidation reactions from a S-rich fluid phase. The composition of fluids may vary within and among parent bodies and could be sourced from magmatic (e.g. Moon) or impact processes (e.g. HED meteorites and Moon). For example, it has been previously demonstrated on the Moon that the interaction of olivine with a hydrogen- and sulfur-bearing vapor phase altered primary mineral assemblages, producing sulfides (e.g. troilite) and orthopyroxene. Formation of these types of "sulfidation" assemblages can be illustrated with the following reaction: Fe2SiO4(ol) + 1/2 S(2 system) = FeS(troi)+ FeSiO3(opx) + 1/2 O2 system. The products of this reaction, as seen in lunar rocks, is a vermicular or "worm-like" texture of intergrown orthopyroxene and troilite. Regardless of the provenance of the S-bearing fluid, the minerals in these various planetary environments reacted in the same manner to produce orthopyroxene and troilite. Although similar textures have been identified in a variety of parent bodies, a comparative study on the compositions and the origins of these sulfide-silicate assemblages has yet to be undertaken. The intent of this study is to examine and compare sulfide-silicate intergrowths from various planetary bodies to explore their petrogenesis and examine the nature of low fO2 (IW+/-2) element migration and sulfidation reactions
The evolution of bits and bottlenecks in a scientific workflow trying to keep up with technology: Accelerating 4D image segmentation applied to nasa data
In 2016, a team of earth scientists directly engaged a team of computer scientists to identify cyberinfrastructure (CI) approaches that would speed up an earth science workflow. This paper describes the evolution of that workflow as the two teams bridged CI and an image segmentation algorithm to do large scale earth science research. The Pacific Research Platform (PRP) and The Cognitive Hardware and Software Ecosystem Community Infrastructure (CHASE-CI) resources were used to significantly decreased the earth science workflow's wall-clock time from 19.5 days to 53 minutes. The improvement in wall-clock time comes from the use of network appliances, improved image segmentation, deployment of a containerized workflow, and the increase in CI experience and training for the earth scientists. This paper presents a description of the evolving innovations used to improve the workflow, bottlenecks identified within each workflow version, and improvements made within each version of the workflow, over a three-year time period
Observations of the Crab Nebula and its pulsar in the far-ultraviolet and in the optical
We present HST/STIS far-UV observations of the Crab nebula and its pulsar.
Broad, blueshifted absorption arising in the nebula is seen in C IV 1550,
reaching about 2500 km/s. This can be interpreted as evidence for a fast outer
shell, and we adopt a spherically symmetric model to constrain the properties
of this. We find that the density appears to decrease outward in the shell. A
lower limit to the mass is 0.3 solar masses with an accompanying kinetic energy
of 1.5EE{49} ergs. A massive 10^{51} erg shell cannot be excluded, but is less
likely if the density profile is much steeper than R^{-4} and the velocity is
<6000 km/s. The observations cover the region 1140-1720 A. With the time-tag
mode of the spectrograph we obtain the pulse profile. It is similar to that in
the near-UV, although the primary peak is marginally narrower. Together with
the near-UV data, and new optical data from NOT, our spectrum of the pulsar
covers the entire region from 1140-9250 A. Dereddening the spectrum gives a
flat spectrum for E(B-V)=0.52, R=3.1. This dereddened spectrum of the Crab
pulsar can be fitted by a power law with spectral index alpha_{\nu} = 0.11 +/-
0.04. The main uncertainty is the amount and characteristics of the interstel-
lar reddening, and we have investigated the dependence of \alpha_{\nu} on
E(B-V) and R. In the extended emission covered by our 25" x 0.5" slit in the
far-UV, we detect C IV 1550 and He II 1640 emission lines from the Crab nebula.
Several interstellar absorption lines are detected toward the pulsar. The Ly
alpha absorption indicates a column density of 3.0+/-0.5\EE{21} cm^{-2} of
neutral hydrogen, which agrees well with our estimate of E(B-V)=0.52 mag. Other
lines show no evidence of severe depletion of metals in atomic gas.Comment: 18 pages emulateapj style, including 10 figures. ApJ, accepte
Estimations of electron-positron pair production at high-intensity laser interaction with high-Z targets
Electron-positron pairs' generation occuring in the interaction of
-~W/cm laser radiation with high-Z targets are examined.
Computational results are presented for the pair production and the positron
yield from the target with allowance for the contribution of pair production
processes due to electrons and bremsstrahlung photons.
Monte-Carlo simulations using the PRIZMA code confirm the estimates obtained.
The possible positron yield from high-Z targets irradiated by picosecond lasers
of power -~TW is estimated to be -
- …