859 research outputs found
Ion Larmor radius effects near a reconnection X line at the magnetopause: THEMIS observations and simulation comparison
We report a Time History of Events and Macroscale Interactions during Substorms (THEMIS-D) spacecraft crossing of a magnetopause reconnection exhaust ~9 ion skin depths (di) downstream of an X line. The crossing was characterized by ion jetting at speeds substantially below the predicted reconnection outflow speed. In the magnetospheric inflow region THEMIS detected (a) penetration of magnetosheath ions and the resulting flows perpendicular to the reconnection plane, (b) ion outflow extending into the magnetosphere, and (c) enhanced electron parallel temperature. Comparison with a simulation suggests that these signatures are associated with the gyration of magnetosheath ions onto magnetospheric field lines due to the shift of the flow stagnation point toward the low-density magnetosphere. Our observations indicate that these effects, ~2â3 di in width, extend at least 9 di downstream of the X line. The detection of these signatures could indicate large-scale proximity of the X line but do not imply that the spacecraft was upstream of the electron diffusion region
THEMIS multispacecraft observations of a reconnecting magnetosheath current sheet with symmetric boundary conditions and a large guide field
We report three spacecraft observations of a reconnecting magnetosheath current sheet with a guide field of unity, with THEMIS D (THD) and THEMIS E (THE)/THEMIS A (THA) observing oppositely directed reconnection exhausts, indicating the presence of an X line between the spacecraft. The near-constant convective speed of the magnetosheath current sheet allowed the direct translation of the observed time series into spatial profiles. THD observed asymmetries in the plasma density and temperature profiles across the exhaust, characteristics of symmetric reconnection with a guide field. The exhausts at THE and THA, on the other hand, were not the expected mirror image of the THD exhaust in terms of the plasma and field profiles. They consisted of a main outflow at the center of the current sheet, flanked by oppositely directed flows at the two edges of the current sheet, suggesting the presence of a second X line, whose outflow wraps around the outflow from the first X line
How Does Fusarium oxysporum Sense and Respond to Nicotinaldehyde, an Inhibitor of the NAD+ Salvage Biosynthesis Pathway?
Plant pathogenic fungi are a major threat to food security and impose a severe economic burden, thus there is a continuous need to develop new strategies to manage them. NAD+ is a co-factor in numerous enzymatic activities and determines the metabolic fate of the cell. Therefore, maintenance of NAD+ concentration is important for cellular viability. Consequently, the NAD+ biosynthetic pathway and redox homeostasis was suggested as a target for antifungal development. We aimed to study how Fusarium oxysporum senses and responds to nicotinaldehyde (NA), an inhibitor of Pnc1, a key enzyme in the salvage pathway of NAD+ biosynthesis. We were able to show that NA was inhibitory in high concentrations to several fungal plant pathogens, with much milder effects on tomato growth. Under low nutrient conditions NA reduced the total amounts of NAD+ in the fungal cell, a trend that was also observed in rich media, although without statistical significance. In low and high nutrient availability NA dramatically reduced the NAD+/NADH ratio. After exposure to NA, NADH levels were increased and NAD+ levels and the biomass were greatly reduced. Cells responded to NA by up-regulation of oxidoreductases, with hardly any up-regulation of the classic response to oxidative stress. Direct measurement of oxidative stress response showed that unlike formaldehyde and hydrogen peroxide, NA caused reductive rather than oxidative stress. Surprisingly, alcohol dehydrogenases were significantly up-regulated more than any other dehydrogenases, including aldehyde dehydrogenases. We propose that conidia of F. oxysporum efficiently detoxified the aldehyde group of NA by reducing NAD+ to NADH; the high concentrations of the latter provoked the expression of alcohol dehydrogenases that in yeast can act to reduce NADH and increase NAD+ amounts, respectively. Overall, the results suggest that targeting NAD+ biosynthesis pathway and redox homeostasis can be a potential approach to manage fungal plant pathogens. Many of the natural antifungal compounds produced by bio-control agents or even the natural biome are aldehydes, and thus the results presented here predict the possible response of Fusarium to wide sources of toxicity in the environment
MMS observations of electron-scale filamentary currents in the reconnection exhaust and near the X line
© 2016. American Geophysical Union. All Rights Reserved.We report Magnetospheric Multiscale observations of macroscopic and electron-scale current layers in asymmetric reconnection. By intercomparing plasma, magnetic, and electric field data at multiple crossings of a reconnecting magnetopause on 22 October 2015, when the average interspacecraft separation was ~10km, we demonstrate that the ion and electron moments are sufficiently accurate to provide reliable current density measurements at 30ms cadence. These measurements, which resolve current layers narrower than the interspacecraft separation, reveal electron-scale filamentary Hall currents and electron vorticity within the reconnection exhaust far downstream of the X line and even in the magnetosheath. Slightly downstream of the X line, intense (up to 3ÎŒA/m2) electron currents, a super-AlfvĂ©nic outflowing electron jet, and nongyrotropic crescent shape electron distributions were observed deep inside the ion-scale magnetopause current sheet and embedded in the ion diffusion region. These characteristics are similar to those attributed to the electron dissipation/diffusion region around the X line
Energy transfer in reconnection and turbulence
Reconnection and turbulence are two of the most commonly observed dynamical processes in plasmas, but their relationship is still not fully understood. Using 2.5D kinetic particle-in-cell simulations of both strong turbulence and reconnection, we compare the cross-scale transfer of energy in the two systems by analyzing the generalization of the von KĂĄrmĂĄn Howarth equations for Hall magnetohydrodynamics, a formulation that subsumes the third-order law for steady energy transfer rates. Even though the large scale features are quite different, the finding is that the decomposition of the energy transfer is structurally very similar in the two cases. In the reconnection case, the time evolution of the energy transfer also exhibits a correlation with the reconnection rate. These results provide explicit evidence that reconnection dynamics fundamentally involves turbulence-like energy transfer
Efficient algorithms for analyzing segmental duplications with deletions and inversions in genomes
Background: Segmental duplications, or low-copy repeats, are common in mammalian genomes. In the human genome, most segmental duplications are mosaics comprised of multiple duplicated fragments. This complex genomic organization complicates analysis of the evolutionary history of these sequences. One model proposed to explain this mosaic patterns is a model of repeated aggregation and subsequent duplication of genomic sequences. Results: We describe a polynomial-time exact algorithm to compute duplication distance, a genomic distance defined as the most parsimonious way to build a target string by repeatedly copying substrings of a fixed source string. This distance models the process of repeated aggregation and duplication. We also describe extensions of this distance to include certain types of substring deletions and inversions. Finally, we provide an description of a sequence of duplication events as a context-free grammar (CFG). Conclusion: These new genomic distances will permit more biologically realistic analyses of segmental duplications in genomes.
MagneToRE: Mapping the 3-D Magnetic Structure of the Solar Wind Using a Large Constellation of Nanosatellites
Unlike the vast majority of astrophysical plasmas, the solar wind is accessible to spacecraft, which for decades have carried in-situ instruments for directly measuring its particles and fields. Though such measurements provide precise and detailed information, a single spacecraft on its own cannot disentangle spatial and temporal fluctuations. Even a modest constellation of in-situ spacecraft, though capable of characterizing fluctuations at one or more scales, cannot fully determine the plasmaâs 3-D structure. We describe here a concept for a new mission, the Magnetic Topology Reconstruction Explorer (MagneToRE), that would comprise a large constellation of in-situ spacecraft and would, for the first time, enable 3-D maps to be reconstructed of the solar windâs dynamic magnetic structure. Each of these nanosatellites would be based on the CubeSat form-factor and carry a compact fluxgate magnetometer. A larger spacecraft would deploy these smaller ones and also serve as their telemetry link to the ground and as a host for ancillary scientific instruments. Such an ambitious mission would be feasible under typical funding constraints thanks to advances in the miniaturization of spacecraft and instruments and breakthroughs in data science and machine learning
Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet
During three of its first five orbits around the Sun, Parker Solar Probe (PSP) crossed the large-scale Heliospheric Current Sheet (HCS) multiple times and provided unprecedented detailed plasma and field observations of the near-Sun HCS. We report the common detections by PSP of reconnection exhaust signatures in the HCS at heliocentric distances of 29.5-107 solar radii during Encounters 1, 4 and 5. Both sunward and antisunward-directed reconnection exhausts were observed. In the sunward reconnection exhausts, PSP detected counterstreaming strahl electrons, indicating that HCS reconnection resulted in the formation of closed magnetic field lines with both ends connected to the Sun. In the antisunward exhausts, PSP observed dropouts of strahl electrons, consistent with the reconnected HCS field lines being disconnected from the Sun. The common detection of reconnection in the HCS suggests that reconnection is almost always active in the HCS near the Sun. Furthermore, the occurrence of multiple long-duration partial crossings of the HCS suggests that HCS reconnection could produce chains of large bulges with spatial dimensions of up to several solar radii. The finding of the prevalence of reconnection in the HCS is somewhat surprising since PSP has revealed that the HCS is much thicker than the kinetic scales required for reconnection onset. The observations are also in stark contrast with the apparent absence of reconnection in most of the small-scale and much more intense current sheets encountered near perihelia, many of which are associated with âswitchbacksâ. Thus, the PSP findings suggest that large-scale dynamics either locally in the solar wind or within the coronal source of the HCS (at the tip of helmet streamers) plays a critical role in triggering reconnection onset
- âŠ