23 research outputs found

    Risk factors for human brucellosis in northern Tanzania

    Get PDF
    Little is known about the epidemiology of human brucellosis in sub-Saharan Africa. This hampers prevention and control efforts at the individual and population levels. To evaluate risk factors for brucellosis in northern Tanzania, we conducted a study of patients presenting with fever to two hospitals in Moshi, Tanzania. Serum taken at enrollment and at 4–6 week follow-up was tested by Brucella microagglutination test. Among participants with a clinically compatible illness, confirmed brucellosis cases were defined as having a ≥ 4-fold rise in agglutination titer between paired sera or a blood culture positive for Brucella spp., and probable brucellosis cases were defined as having a single reciprocal titer ≥ 160. Controls had reciprocal titers < 20 in paired sera. We collected demographic and clinical information and administered a risk factor questionnaire. Of 562 participants in the analysis, 50 (8.9%) had confirmed or probable brucellosis. Multivariable analysis showed that risk factors for brucellosis included assisting goat or sheep births (Odds ratio [OR] 5.9, 95% confidence interval [CI] 1.4, 24.6) and having contact with cattle (OR 1.2, 95% CI 1.0, 1.4). Consuming boiled or pasteurized dairy products was protective against brucellosis (OR 0.12, 95% CI 0.02, 0.93). No participants received a clinical diagnosis of brucellosis from their healthcare providers. The under-recognition of brucellosis by healthcare workers could be addressed with clinician education and better access to brucellosis diagnostic tests. Interventions focused on protecting livestock keepers, especially those who assist goat or sheep births, are needed

    BRAF(V600) inhibition alters the microRNA cargo in the vesicular secretome of malignant melanoma cells

    Get PDF
    The BRAF inhibitors vemurafenib and dabrafenib can be used to treat patients with metastatic melanomas harboring BRAF(V600) mutations. Initial antitumoral responses are often seen, but drug-resistant clones with reactivation of the MEK-ERK pathway soon appear. Recently, the secretome of tumor-derived extracellular vesicles (EVs) has been ascribed important functions in cancers. To elucidate the possible functions of EVs in BRAF-mutant melanoma, we determined the RNA content of the EVs, including apoptotic bodies, microvesicles, and exosomes, released from such cancer cells after vemurafenib treatment. We found that vemurafenib significantly increased the total RNA and protein content of the released EVs and caused significant changes in the RNA profiles. RNA sequencing and quantitative PCR show that cells and EVs from vemurafenib-treated cell cultures and tumor tissues harvested from cell-derived and patient-derived xenografts harbor unique miRNAs, especially increased expression of miR-211-5p. Mechanistically, the expression of miR-211-5p as a result of BRAF inhibition was induced by increased expression of MITF that regulates the TRPM1 gene resulting in activation of the survival pathway. In addition, transfection of miR-211 in melanoma cells reduced the sensitivity to vemurafenib treatment, whereas miR-211-5p inhibition in a vemurafenib resistant cell line affected the proliferation negatively. Taken together, our results show that vemurafenib treatment induces miR-211-5p up-regulation in melanoma cells both in vitro and in vivo, as well as in subsets of EVs, suggesting that EVs may provide a tool to understand malignant melanoma progression.1114sciescopu

    Internal Tides Drive Nutrient Fluxes Into the Deep Chlorophyll Maximum Over Mid‐ocean Ridges

    Get PDF
    Diapycnal mixing of nutrients from the thermocline to the surface sunlit ocean is thought to be relatively weak in the world's subtropical gyres as energy inputs from winds are generally low. The interaction of internal tides with rough topography enhances diapycnal mixing, yet the role of tidally induced diapycnal mixing in sustaining nutrient supply to the surface subtropical ocean remains relatively unexplored. During a field campaign in the North Atlantic subtropical gyre, we tested whether tidal interactions with topography enhance diapycnal nitrate fluxes in the upper ocean. We measured an order of magnitude increase in diapycnal nitrate fluxes to the deep chlorophyll maximum (DCM) over the Mid‐Atlantic Ridge compared to the adjacent deep ocean. Internal tides drive this enhancement, with diapycnal nitrate supply to the DCM increasing by a factor of 8 between neap and spring tides. Using a global tidal dissipation database, we find that this spring‐neap enhancement in diapycnal nitrate fluxes is widespread over ridges and seamounts. Mid‐ocean ridges therefore play an important role in sustaining the nutrient supply to the DCM, and these findings may have important implications in a warming global ocean

    Selective intracellular release of copper and zinc ions from bis(thiosemicarbazonato) complexes reduces levels of Alzheimer disease amyloid-β peptide

    Get PDF
    Copper and zinc play important roles in Alzheimer disease pathology with recent reports describing potential therapeutics based on modulation of metal bioavailability. We examined the ability of a range of metal bis(thiosemicarbazonato) complexes (MII(btsc), where M = Cu II or ZnII) to increase intracellular metal levels in Chinese hamster ovary cells overexpressing amyloid precursor protein (APP-CHO) and the subsequent effect on extracellular levels of amyloid-β peptide (Aβ). The CuII(btsc) complexes were engineered to be either stable to both a change in oxidation state and dissociation of metal or susceptible to intracellular reduction and dissociation of metal. Treatment of APP-CHO cells with stable complexes resulted in elevated levels of intracellular copper with no effect on the detected levels of Aβ. Treatment with complexes susceptible to intracellular reduction increased intracellular copper levels but also resulted in a dose-dependent reduction in the levels of monomeric Aβ. Treatment with less stable ZnII(btsc) complexes increased intracellular zinc levels with a subsequent dose-dependent depletion of monomeric Aβ levels. The increased levels of intracellular bioavailable copper and zinc initiated a signaling cascade involving activation of phosphoinositol 3-kinase and c-Jun N-terminal kinase. Inhibition of these enzymes prevented Aβ depletion induced by the MII(btsc) complexes. Inhibition of metalloproteases also partially restored Aβ levels, implicating metal-driven metalloprotease activation in the extracellular monomeric Aβ depletion. However, a role for alternative metal-induced Aβ metabolism has not been ruled out. These studies demonstrate that M II(btsc) complexes have potential for Alzheimer disease therapy

    Degradation of the Alzheimer disease amyloid β-peptide by metal-dependent up-regulation of metalloprotease activity

    Get PDF
    Biometals play an important role in Alzheimer disease, and recent reports have described the development of potential therapeutic agents based on modulation of metal bioavailability. The metal ligand clioquinol (CQ) has shown promising results in animal models and small phase clinical trials; however, the actual mode of action in vivo has not been determined. We now report a novel effect of CQ on amyloid β-peptide (Aβ) metabolism in cell culture. Treatment of Chinese hamster ovary cells overexpressing amyloid precursor protein with CQ and Cu2+ or Zn2+ resulted in an ∼85-90% reduction of secreted Aβ-(1-40) and Aβ-(1-42) compared with untreated controls. Analogous effects were seen in amyloid precursor protein-overexpressing neuroblastoma cells. The secreted Aβ was rapidly degraded through up-regulation of matrix metalloprotease (MMP)-2 and MMP-3 after addition of CQ and Cu2+. MMP activity was increased through activation of phosphoinositol 3-kinase and JNK. CQ and Cu2+ also promoted phosphorylation of glycogen synthase kinase-3, and this potentiated activation of JNK and loss of Aβ-(1-40). Our findings identify an alternative mechanism of action for CQ in the reduction of Aβ deposition in the brains of CQ-treated animals and potentially in Alzheimer disease patients

    Inhibition of gamma-secretase causes increased secretion of amyloid precursor protein C-terminal fragments in association with exosomes

    No full text
    Alzheimer's disease (AD) is the most common form of dementia and is associated with the deposition of the 39- to 43-amino acid β-amyloid peptide (Aβ) in the brain. C-terminal fragments (CTFs) of amyloid precursor protein (APP) can accumulate in endosomally derived multivesicular bodies (MVBs). These intracellular structures contain intraluminal vesicles that are released from the cell as exosomes when the MVB fuses with the plasma membrane. Here we have investigated the role of exosomes in the processing of APP and show that these vesicles contain APP-CTFs, as well as Aβ. In addition, inhibition of γ-secretase results in a significant increase in the amount of α-and β-secretase cleavage, further increasing the amount of APP-CTFs contained within these exosomes. We identify several key members of the secretase family of proteases (BACE, PS1, PS2, and ADAM10) to be localized in exosomes, suggesting they may be a previously unidentified site of APP cleavage. These results provide further evidence for a novel pathway in which APP fragments are released from cells and have implications for the analysis of APP processing and diagnostics for Alzheimer's disease
    corecore