10 research outputs found

    Protease/antiprotease network in allergy : the role of Staphylococcus aureus protease-like proteins

    Get PDF
    Staphylococcus aureus is being recognized as a major cofactor in atopic diseases such as atopic dermatitis, chronic rhinosinusitis with nasal polyps, and asthma. The understanding of the relationship between S aureus virulence factors and the immune system is continuously improving. Although the precise mechanism of the host's immune response adaptation to the variable secretion profile of S aureus strains continues to be a matter of debate, an increasing number of studies have reported on central effects of S aureus secretome in allergy. In this review, we discuss how colonization of S aureus modulates the innate and adaptive immune response, thereby predisposing the organism to allergic sensitization and disrupting immune tolerance in the airways of patients with asthma and chronic rhinosinusitis with nasal polyps. Next, we provide a critical overview of novel concepts dealing with S aureus in the initiation and persistence of chronic rhinosinusitis with nasal polyps and asthma. The role of the S aureus serine protease-like proteins in the initiation of a type 2 response and the contribution of the IL-33/ST2 signaling axis in allergic responses induced by bacterial allergens are discussed

    mRNA encoding a bispecific single domain antibody construct protects against influenza A virus infection in mice

    Get PDF
    To date, mRNA-based biologics have mainly been developed for prophylactic and therapeutic vaccination to combat infectious diseases or cancer. In the past years, optimization of the characteristics of in vitro transcribed mRNA has led to significant reduction of the inflammatory responses. Thanks to this, mRNA therapeutics have entered the field of passive immunization. Here, we established an mRNA treatment that is based on mRNA that codes for a bispecific single-domain antibody construct that can selectively recruit innate immune cells to cells infected with influenza A virus. The constructs consist of a single-domain antibody that binds to the ectodomain of the conserved influenza A matrix protein 2, while the other single-domain antibody binds to the activating mouse Fc gamma receptor IV. Formulating the mRNA into DOTAP (1,2-dioleoyl-3trimethylammonium-propane)/cholesterol nanoparticles and delivering these intratracheally to mice allowed the production of the bispecific single-domain antibody in the lungs, and administration of these mRNA-particles prior to influenza A virus infection was associated with a significant reduction in viral titers and a reduced morbidity in mice. Overall, our data provide evidence that the local delivery of mRNA encoding a bispecific single-domain antibody format in the lungs could be a promising pulmonary antiviral prophylactic treatment

    Differential protease content of mast cells and the processing of IL-33 in Alternaria alternata induced allergic airway inflammation in mice

    Get PDF
    BackgroundRecent in vitro studies strongly implicated mast cell-derived proteases as regulators of IL-33 activity by enzymatic cleavage in its central domain. A better understanding of the role of mast cell proteases on IL-33 activity in vivo is needed. We aimed to compare the expression of mast cell proteases in C57BL/6 and BALB/c mice, their role in the cleavage of IL-33 cytokine, and their contribution to allergic airway inflammation.ResultsIn vitro, full-length IL-33 protein was efficiently degraded by mast cell supernatants of BALB/c mice in contrast to the mast cell supernatants from C57BL/6 mice. RNAseq analysis indicated major differences in the gene expression profiles of bone marrow-derived mast cells from C57BL/6 and BALB/c mice. In Alternaria alternata (Alt) - treated C57BL/6 mice the full-length form of IL-33 was mainly present, while in BALB/c mice, the processed shorter form of IL-33 was more prominent. The observed cleavage pattern of IL-33 was associated with a nearly complete lack of mast cells and their proteases in the lungs of C57BL/6 mice. While most inflammatory cells were similarly increased in Alt-treated C57BL/6 and BALB/c mice, C57BL/6 mice had significantly more eosinophils in the bronchoalveolar lavage fluid and IL-5 protein levels in their lungs than BALB/c mice.ConclusionOur study demonstrates that lung mast cells differ in number and protease content between the two tested mouse strains and could affect the processing of IL-33 and inflammatory outcome of Alt -induced airway inflammation. We suggest that mast cells and their proteases play a regulatory role in IL-33-induced lung inflammation by limiting its proinflammatory effect via the IL-33/ST2 signaling pathway

    Granulocyte colony-stimulating factor : missing link for stratification of type 2-high and type 2-low chronic rhinosinusitis patients

    No full text
    Background: Chronic rhinosinusitis (CRS) is a heterogeneous disease, with patients having either a high or low type 2 inflammatory endotype. Whereas the type 2-high group is well characterized by IL-5 expression, the type 2-low group, consisting of approximately 20% of CRS with and 50% of CRS without nasal polyp patients, lacks a clear biomarker profile and thus specific therapeutic targets. Objective: The aim was to identify underlying molecular pathways of type 2-low CRS, as stratification of patients may allow improvement of personalized treatments. Methods: Luminex assays were performed to analyze proteins in nasal secretions and tissues of CRS patients. Immunostainings were analyzed for differences in neutrophils, granulocyte-colony stimulating factor (G-CSF), and its receptor in nasal tissue. Neutrophils were isolated from blood of healthy volunteers and stimulated with G-CSF. Effects on apoptosis and neutrophil activity were analyzed with flow cytometry. Results: G-CSF was significantly upregulated in nasal tissue and secretion fluid of type 2-low CRS patients compared to type 2-high patients. In nasal polyp tissue of type 2-low patients, a large infiltration of neutrophils expressing both G-CSF and its receptor was detected, suggesting the presence of a neutrophil-intrinsic autocrine survival mechanism. In response to G-CSF, neutrophils were in an activated state and were resistant to apoptosis, possibly contributing to a chronic inflammation. Of interest, type 2-high nasal polyp patients treated with IgE-blocking omalizumab had increased G-CSF concentrations compared to before treatment. Conclusion: G-CSF is an important cytokine regulating neutrophils in type 2-low CRS and has potential in the diagnosis and therapy of the disease

    Neutrophils affect IL-33 processing in response to the respiratory allergen Alternaria alternata

    Get PDF
    Future precision medicine requires further clarifying the mechanisms of inflammation in the severe endotypes of chronic airway diseases such as asthma and chronic rhinosinusitis (CRS). The presence of neutrophils in the airways is often associated with severe airway inflammation, while their precise contribution to the severe inflammation is largely unknown. We aimed to study the role of neutrophils in BALB/c and C57BL/6 mice exposed to Alternaria alternata (Alt). The mice were exposed to Alt extract for twelve hours or ten days to induce allergic airway inflammation. C57BL/6 mice exposed to Alt responded with eosinophilic infiltration and the characteristic IL-5 upregulation. In contrast, the inflammatory response to Alt extract in BALB/c mice was characterized by a neutrophilic response, high levels of G-CSF, and elastase in the lungs. The lack of neutrophils affected the processing of IL-33 in BALB/c mice, as was demonstrated by depletion of neutrophils through intraperitoneal injections of anti-Ly6G antibody. Our data identifies the key role of neutrophils in airway inflammation through IL-33 cleavage in the Alt-induced airway inflammation in mice, which could potentially underline the different endotypes in human disease

    Differential protease content of mast cells and the processing of IL-33 in Alternaria alternata induced allergic airway inflammation in mice.

    No full text
    Background: Recent in vitro studies strongly implicated mast cell-derived proteases as regulators of IL-33 activity by enzymatic cleavage in its central domain. A better understanding of the role of mast cell proteases on IL-33 activity in vivo is needed. We aimed to compare the expression of mast cell proteases in C57BL/6 and BALB/c mice, their role in the cleavage of IL-33 cytokine, and their contribution to allergic airway inflammation.; Results: In vitro, full-length IL-33 protein was efficiently degraded by mast cell supernatants of BALB/c mice in contrast to the mast cell supernatants from C57BL/6 mice. RNAseq analysis indicated major differences in the gene expression profiles of bone marrow-derived mast cells from C57BL/6 and BALB/c mice. In Alternaria alternata (Alt) - treated C57BL/6 mice the full-length form of IL-33 was mainly present, while in BALB/c mice, the processed shorter form of IL-33 was more prominent. The observed cleavage pattern of IL-33 was associated with a nearly complete lack of mast cells and their proteases in the lungs of C57BL/6 mice. While most inflammatory cells were similarly increased in Alt-treated C57BL/6 and BALB/c mice, C57BL/6 mice had significantly more eosinophils in the bronchoalveolar lavage fluid and IL-5 protein levels in their lungs than BALB/c mice.; Conclusion: Our study demonstrates that lung mast cells differ in number and protease content between the two tested mouse strains and could affect the processing of IL-33 and inflammatory outcome of Alt -induced airway inflammation. We suggest that mast cells and their proteases play a regulatory role in IL-33-induced lung inflammation by limiting its proinflammatory effect via the IL-33/ST2 signaling pathway

    Mouse Strain-Dependent Difference Toward the Staphylococcus aureus Allergen Serine Protease-Like Protein D Reveals a Novel Regulator of IL-33

    Get PDF
    Staphylococcus aureus(S. aureus)can secrete a broad range of virulence factors, among which staphylococcal serine protease-like proteins (Spls) have been identified as bacterial allergens. TheS. aureusallergen serine protease-like protein D (SplD) induces allergic asthma in C57BL/6J mice through the IL-33/ST2 signaling axis. Analysis of C57BL/6J, C57BL/6N, CBA, DBA/2, and BALB/c mice treated with intratracheal applications of SplD allowed us to identify a frameshift mutation in the serine (or cysteine) peptidase inhibitor, clade A, and member 3I (Serpina3i) causing a truncated form of SERPINA3I in BALB/c, CBA, and DBA/2 mice. IL-33 is a key mediator of SplD-induced immunity and can be processed by proteases leading to its activation or degradation. Full-length SERPINA3I inhibits IL-33 degradationin vivoin the lungs of SplD-treated BALB/c mice andin vitroby direct inhibition of mMCP-4. Collectively, our results establish SERPINA3I as a regulator of IL-33 in the lungs following exposure to the bacterial allergen SplD, and that the asthma phenotypes of mouse strains may be strongly influenced by the observed frameshift mutation in Serpina3i. The analysis of this protease-serpin interaction network might help to identify predictive biomarkers for type-2 biased airway disease in individuals colonized byS. aureus
    corecore