189 research outputs found

    How galactic environment regulates star formation

    Get PDF
    In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars-internal structure versus external, environmental influences-providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating turbulent (isothermal) cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itself inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and at the same time provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment

    Uncovering the origins of spiral structure through the measurement of pattern speeds and their radial variation

    Get PDF
    At the intersection of galactic dynamics, evolution and global structure, unresolved issues in the nature and origin of spirals can be addressed through the characterization of the angular speeds of the patterns and their possible radial variation. In this thesis I describe the development, testing, and application of the Radial Tremaine-Weinberg (TWR) Method, a generalized version of the continuity-based TW method wherein the pattern speed is allowed to vary arbitrarily with radius. I will address the utility of, and caveats in applying, the TWR calculation together with a standard regularization technique in a series of tests on N-body simulations. The regularization, which smooths otherwise intrinsically noisy solutions based on a priori assumptions for the radial dependence of the pattern speed, proves to be essential for achieving the radial precision necessary for accurate measurement. I also present results from applications of the TWR method to observations of real galaxies, where the possible sources and sinks in the continuity equation are well understood. Using CO observations of the grand design galaxy M51, the TWR method reveals a heretofore un-measured inner spiral pattern speed for the bright two-armed spiral structure, with a value significantly higher than conventional estimates. In addition, the radial dependence implied in the TWR solution suggests a possible resonant link between the inner and outer regions of the bright spiral arms. These findings signify an advance in observational investigations into the nature and origin of grand-design spiral structure. By analyzing high-quality HI and CO data cubes available for four other spiral galaxies, the characteristic signatures of the processes that drive spiral structure are likewise identifiable; within this small sample, the first direct evidence for the presence of resonant coupling of multiple distinct patterns is found in some galaxies, while a simple single pattern speed is measured in others. I conclude with a summary of future avenues for investigation with the TWR method and propose additional modifications of the TW calculation with which the influence of bar and spiral structure on the evolution of galaxy disks can be directly characterized

    Molecular Clouds as Gravitational Instabilities in Rotating Disks: A Modified Stability Criterion

    Full text link
    Molecular gas disks are generally Toomre stable (QT>Q_T>1) and yet clearly gravitationally unstable to structure formation as evidenced by the existence of molecular clouds and ongoing star formation. This paper adopts a 3D perspective to obtain a general picture of instabilities in flattened rotating disks, using the 3D dispersion relation to describe how disks evolve when perturbed over their vertical extents. By explicitly adding a vertical perturbation to an unperturbed equilibrium disk, stability is shown to vary with height above the mid-plane. Near to zz=0 where the equilibrium density is roughly constant, instability takes on a Jeans-like quality, occurring on scales larger than the Jeans length and subject to a threshold QM=κ2/(4πGρ)=1Q_M=\kappa^2/(4\pi G\rho)=1 or roughly QT2Q_T\approx 2. Far from the mid-plane, on the other hand, stability is pervasive, and the threshold for the total disk (out to z=±z=\pm\infty) to be stabilized is lowered to QT=1Q_T=1 as a consequence. In this new framework, gas disks are able to fragment through partial 3D instability even where total 2D instability is suppressed. The growth rates of the fragments formed via 3D instability are comparable to, or faster than, Toomre instabilities. The rich structure in molecular disks on the scale of 10s of pc can thus be viewed as a natural consequence of their 3D nature and their exposure to a variety of vertical perturbations acting on roughly a disk scale height, i.e. due to their situation within the more extended galaxy potential, participation in the disk-halo flow, and exposure to star formation feedback.Comment: Accepted for publication in ApJ, 23 pages, 3 figure

    Reconstructing the Stellar Mass Distributions of Galaxies Using S4G IRAC 3.6 and 4.5 μm Images. I. Correcting for Contamination by Polycyclic Aromatic Hydrocarbons, Hot Dust, and Intermediate-age Stars

    Get PDF
    With the aim of constructing accurate two-dimensional maps of the stellar mass distribution in nearby galaxies from Spitzer Survey of Stellar Structure in Galaxies 3.6 and 4.5 μm images, we report on the separation of the light from old stars from the emission contributed by contaminants. Results for a small sample of six disk galaxies (NGC 1566, NGC 2976, NGC 3031, NGC 3184, NGC 4321, and NGC 5194) with a range of morphological properties, dust content, and star formation histories are presented to demonstrate our approach. To isolate the old stellar light from contaminant emission (e.g., hot dust and the 3.3 μm polycyclic aromatic hydrocarbon (PAH) feature) in the IRAC 3.6 and 4.5 μm bands we use an independent component analysis (ICA) technique designed to separate statistically independent source distributions, maximizing the distinction in the [3.6]-[4.5] colors of the sources. The technique also removes emission from evolved red objects with a low mass-to-light ratio, such as asymptotic giant branch (AGB) and red supergiant (RSG) stars, revealing maps of the underlying old distribution of light with [3.6]-[4.5] colors consistent with the colors of K and M giants. The contaminants are studied by comparison with the non-stellar emission imaged at 8 μm, which is dominated by the broad PAH feature. Using the measured 3.6 μm/8 μm ratio to select individual contaminants, we find that hot dust and PAHs together contribute between ~5% and 15% to the integrated light at 3.6 μm, while light from regions dominated by intermediate-age (AGB and RSG) stars accounts for only 1%-5%. Locally, however, the contribution from either contaminant can reach much higher levels; dust contributes on average 22% to the emission in star-forming regions throughout the sample, while intermediate-age stars contribute upward of 50% in localized knots. The removal of these contaminants with ICA leaves maps of the old stellar disk that retain a high degree of structural information and are ideally suited for tracing stellar mass, as will be the focus in a companion paper

    Interactions of the Galactic bar and spiral arm in NGC 3627

    Get PDF
    Aims: To gain insight into the expected gas dynamics at the interface of the Galactic bar and spiral arms in our own Milky Way galaxy, we examine as an extragalactic counterpart the evidence of multiple distinct velocity components in the cold dense molecular gas that populates a similar region at the end of the bar in the nearby galaxy NGC 3627. Methods: We assembled a high-resolution view of molecular gas kinematics traced by CO(2-1) emission and extracted line-of-sight velocity profiles from regions of high and low gas velocity dispersion. Results: The high velocity dispersions arise with often double-peaked or multiple line-profiles. We compare the centroids of the different velocity components to expectations based on orbital dynamics in the presence of bar and spiral potential perturbations. A model of the region as the interface of two gas-populated orbits families supporting the bar and the independently rotating spiral arms provides an overall good match to the data. An extent of the bar to the corotation radius of the galaxy is favored. Conclusions: Using NGC 3627 as an extragalactic example, we expect situations like this to favor strong star formation events such as are observed in our own Milky Way since gas can pile up where the orbit families cross. The relative motions of the material following these orbits is most likely even more important for the build-up of high density in the region. The surface densities in NGC 3627 are also so high that shear at the bar end is unlikely to significantly weaken the star formation activity. We speculate that scenarios in which the bar and spiral rotate at two different pattern speeds may be the most favorable for intense star formation at such interfaces

    Interactions of the Galactic bar and spiral arm in NGC 3627

    Get PDF
    Aims: To gain insight into the expected gas dynamics at the interface of the Galactic bar and spiral arms in our own Milky Way galaxy, we examine as an extragalactic counterpart the evidence of multiple distinct velocity components in the cold dense molecular gas that populates a similar region at the end of the bar in the nearby galaxy NGC 3627. Methods: We assembled a high-resolution view of molecular gas kinematics traced by CO(2-1) emission and extracted line-of-sight velocity profiles from regions of high and low gas velocity dispersion. Results: The high velocity dispersions arise with often double-peaked or multiple line-profiles. We compare the centroids of the different velocity components to expectations based on orbital dynamics in the presence of bar and spiral potential perturbations. A model of the region as the interface of two gas-populated orbits families supporting the bar and the independently rotating spiral arms provides an overall good match to the data. An extent of the bar to the corotation radius of the galaxy is favored. Conclusions: Using NGC 3627 as an extragalactic example, we expect situations like this to favor strong star formation events such as are observed in our own Milky Way since gas can pile up where the orbit families cross. The relative motions of the material following these orbits is most likely even more important for the build-up of high density in the region. The surface densities in NGC 3627 are also so high that shear at the bar end is unlikely to significantly weaken the star formation activity. We speculate that scenarios in which the bar and spiral rotate at two different pattern speeds may be the most favorable for intense star formation at such interfaces

    Being WISE I: Validating Stellar Population Models and M/L ratios at 3.4 and 4.6 microns

    Get PDF
    Using data from the WISE mission, we have measured near infra-red (NIR) photometry of a diverse sample of dust-free stellar systems (globular clusters, dwarf and giant early-type galaxies) which have metallicities that span the range -2.2 < [Fe/H] (dex) < 0.3. This dramatically increases the sample size and broadens the metallicity regime over which the 3.4 (W1) and 4.6 micron (W2) photometry of stellar populations have been examined. We find that the W1 - W2 colors of intermediate and old (> 2 Gyr) stellar populations are insensitive to the age of the stellar population, but that the W1 - W2 colors become bluer with increasing metallicity, a trend not well reproduced by most stellar population synthesis (SPS) models. In common with previous studies, we attribute this behavior to the increasing strength of the CO absorption feature located in the 4.6 micron bandpass with metallicity. Having used our sample to validate the efficacy of some of the SPS models, we use these models to derive stellar mass-to-light ratios in the W1 and W2 bands. Utilizing observational data from the SAURON and ATLAS3D surveys, we demonstrate that these bands provide extremely simple, yet robust stellar mass tracers for dust free older stellar populations that are freed from many of the uncertainties common among optical estimators.Comment: 11 pages, 6 figures, submitted to Ap

    Bottom's Dream and the amplification of filamentary gas structures and stellar spiral arms

    Full text link
    Theories of spiral structure traditionally separate into tight-winding Lin-Shu spiral density waves and the swing-amplified material patterns of Goldreich & Lynden-Bell and Julian & Toomre. In this paper we consolidate these two types of spirals into a unified description, treating density waves beyond the tight-winding limit, in the regime of shearing and non-steady open spirals. This 'shearing wave' scenario novelly captures swing amplification that enables structure formation above conventional Q thresholds. However, it also highlights the fundamental role of spiral forcing on the amplification process in general, whether the wave is shearing or not. Thus it captures resonant and non-resonant mode growth through the donkey effect described by Lynden-Bell & Kalnajs and, critically, the cessation of growth when donkey behavior is no longer permitted. Our calculations predict growth exclusive to trailing spirals above the Jeans length, the prominence of spirals across a range of orientations that increases with decreasing arm multiplicity, and a critical orientation where growth is fastest that is the same for both modes and material patterns. Predicted structures are consistent with highly regular, high-multiplicity gaseous spur features and long filaments spaced close to the Jeans scale in spirals and bars. Applied to stellar disks, conditions favor low multiplicity (m<5) open trailing spirals with pitch angles in the observed range 10deg10 deg<ipi_p<50deg50 deg. The results of this work serve as a basis for describing spirals as a unified class of transient waves, abundantly stimulated but narrowly selected for growth depending on local conditions.Comment: Accepted for publication in ApJ, 30 pages, 4 figure

    On the Tremaine-Weinberg method: how much can we trust gas tracers to measure pattern speeds?

    Full text link
    Pattern speeds are a fundamental parameter of the dynamical features (e.g. bars, spiral arms) of a galaxy, setting resonance locations. Pattern speeds are not directly observable, so the Tremaine-Weinberg (TW) method has become the most common method used to measure them in galaxies. However, it has not been tested properly whether this method can straightforwardly be applied to gas tracers, despite this being widely done in the literature. When applied to observations, the TW method may return invalid results, which are difficult to diagnose due to a lack of ground truth for comparison. Although some works applying the TW method to simulated galaxies exist, only stellar populations have been tested. Therefore, here we explore the applicability of the TW method for gas gracers, by applying it to hydrodynamical simulations of galaxies, where we know the true value of the bar pattern speed. We perform some simple tests to see if the TW method has a physically reasonable output. We add different kinds of uncertainties (e.g. in position angle or flux) to the data to mock observational errors based on the magnitude of uncertainty present in the observations. Second, we test the method on 3D simulations with chemical networks. We show that in general, applying TW to observations of gas will not recover the true pattern speed. These results have implications for many "pattern speeds" reported in the literature, and based on these tests we also give some best practices for measuring pattern speeds using gas tracers going forwards.Comment: 9 pages, 8 figures, submitted to MNRA
    corecore