729 research outputs found

    Gravimagnetic effect of the barycentric motion of the Sun and determination of the post-Newtonian parameter gamma in the Cassini experiment

    Full text link
    The most precise test of the post-Newtonian gamma parameter in the solar system has been achieved in measurement of the frequency shift of radio waves to and from the Cassini spacecraft as they passed near the Sun. The test relies upon the JPL model of radiowave propagation that includes, but does not explicitly parametrize, the impact of the non-stationary component of the gravitational field of the Sun, generated by its barycentric orbital motion, on the Shapiro delay. This non-stationary gravitational field of the Sun is associated with the Lorentz transformation of the metric tensor and the affine connection from the heliocentric to the barycentric frame of the solar system and can be treated as gravimagnetic field. The gravimagnetic field perturbs the propagation of a radio wave and contributes to its frequency shift at the level up to 4 10^{-13} that may affect the precise measurement of the parameter gamma in the Cassini experiment to about one part in 10,000. Our analysis suggests that the translational gravimagnetic field of the Sun can be extracted from the Cassini data, and its effect is separable from the space curvature characterized by the parameter gamma.Comment: 12 pages, 1 figure, accepted to Physical Letters

    Quantum thermodynamic fluctuations of a chaotic Fermi-gas model

    Full text link
    We investigate the thermodynamics of a Fermi gas whose single-particle energy levels are given by the complex zeros of the Riemann zeta function. This is a model for a gas, and in particular for an atomic nucleus, with an underlying fully chaotic classical dynamics. The probability distributions of the quantum fluctuations of the grand potential and entropy of the gas are computed as a function of temperature and compared, with good agreement, with general predictions obtained from random matrix theory and periodic orbit theory (based on prime numbers). In each case the universal and non--universal regimes are identified.Comment: 23 pages, 4 figures, 1 tabl

    Phenomenology of Λ\Lambda-CDM model: a possibility of accelerating Universe with positive pressure

    Full text link
    Among various phenomenological Λ\Lambda models, a time-dependent model Λ˙∌H3\dot \Lambda\sim H^3 is selected here to investigate the Λ\Lambda-CDM cosmology. Using this model the expressions for the time-dependent equation of state parameter ω\omega and other physical parameters are derived. It is shown that in H3H^3 model accelerated expansion of the Universe takes place at negative energy density, but with a positive pressure. It has also been possible to obtain the change of sign of the deceleration parameter qq during cosmic evolution.Comment: 16 Latex pages, 11 figures, Considerable modifications in the text; Accepted in IJT

    New York State dairy farmers' perceptions of antibiotic use and resistance : A qualitative interview study

    Get PDF
    Antibiotic resistance is a global problem affecting both human and animal health. Ensuring the strategic and effective use of antibiotics is paramount to combatting the emergence and spread of resistance. This study explored New York State (NYS) dairy farmers' perceptions regarding antibiotic use in dairy farming and antibiotic resistance. Dairy farmers' perceptions were assessed through semi-structured, in-person interviews. Twenty interviews with farm owners and/or managers of 15 conventional and five USDA certified organic dairy farms with 40 to 2,300 lactating cows were conducted. Thematic analysis was used to assess, compare and contrast transcripts for farmers' characterization of their beliefs, values, and concerns. Conventional dairy farmers had a low level of concern about the possible impacts of on-farm antibiotic resistance on human health and believed their antibiotic use was already judicious. Generally, they believed their cattle's health would suffer if antibiotic use were further curtailed. Conventional farmers expressed frustration over the possibility of more stringent governmental, milk cooperative, buyer, or marketer requirements for antibiotic use and associated animal welfare in the future. They attributed expanding regulations in part to misinformed consumer preferences, that farmers felt were influenced by the marketing of organic dairy products. Organic dairy farmers were generally more concerned about issues related to antibiotic resistance than conventional farmers. Both conventional and organic farmers placed emphasis on disease prevention through herd health management rather than treatment. In conclusion, the conventional NYS dairy farmers in this study were skeptical of the need for and benefits of reduced antibiotic use on their dairy farms. Interventions for farmers, delivered by a trusted source such as a veterinarian, that provide training about proper antibiotic use practices and information of possible financial benefits of refining antibiotic use may hold promise

    One-Loop Renormalization and Asymptotic Behaviour of a Higher-Derivative Scalar Theory in Curved Spacetime

    Full text link
    A higher-derivative, interacting, scalar field theory in curved spacetime with the most general action of sigma-model type is studied. The one-loop counterterms of the general theory are found. The renormalization group equations corresponding to two different, multiplicatively renormalizable variants of the same are derived. The analysis of their asymptotic solutions shows that, depending on the sign of one of the coupling constants, we can construct an asymptotically free theory which is also asymptotically conformal invariant at strong (or small) curvature. The connection that can be established between one of the multiplicatively renormalizable variants of the theory and the effective theory of the conformal factor, aiming at the description of quantum gravity at large distances, is investigated.Comment: 11 pages, LaTeX file (some mistakes have been corrected and a reference has been added), UB-ECM-PF 94/

    Renormalization-group running of the cosmological constant and its implication for the Higgs boson mass in the Standard Model

    Get PDF
    The renormalization-group equation for the zero-point energies associated with vacuum fluctuations of massive fields from the Standard Model is examined. Our main observation is that at any scale the running is necessarily dominated by the heaviest degrees of freedom, in clear contradistinction with the Appelquist & Carazzone decoupling theorem. Such an enhanced running would represent a disaster for cosmology, unless a fine-tuned relation among the masses of heavy particles is imposed. In this way, we obtain mH≃550GeVm_H \simeq 550 GeV for the Higgs mass, a value safely within the unitarity bound, but far above the more stringent triviality bound for the case when the validity of the Standard Model is pushed up to the grand unification (or Planck) scale.Comment: 11 pages, LaTex2

    Scalar-Tensor Gravity and Quintessence

    Get PDF
    Scalar fields with inverse power-law effective potentials may provide a negative pressure component to the energy density of the universe today, as required by cosmological observations. In order to be cosmologically relevant today, the scalar field should have a mass mϕ=O(10−33eV)m_\phi = O(10^{-33} {\mathrm eV}), thus potentially inducing sizable violations of the equivalence principle and space-time variations of the coupling constants. Scalar-tensor theories of gravity provide a framework for accommodating phenomenologically acceptable ultra-light scalar fields. We discuss non-minimally coupled scalar-tensor theories in which the scalar-matter coupling is a dynamical quantity. Two attractor mechanisms are operative at the same time: one towards the tracker solution, which accounts for the accelerated expansion of the Universe, and one towards general relativity, which makes the ultra-light scalar field phenomenologically safe today. As in usual tracker-field models, the late-time behavior is largely independent on the initial conditions. Strong distortions in the cosmic microwave background anisotropy spectra as well as in the matter power spectrum are expected.Comment: 5 pages, 4 figure

    Model- and calibration-independent test of cosmic acceleration

    Full text link
    We present a calibration-independent test of the accelerated expansion of the universe using supernova type Ia data. The test is also model-independent in the sense that no assumptions about the content of the universe or about the parameterization of the deceleration parameter are made and that it does not assume any dynamical equations of motion. Yet, the test assumes the universe and the distribution of supernovae to be statistically homogeneous and isotropic. A significant reduction of systematic effects, as compared to our previous, calibration-dependent test, is achieved. Accelerated expansion is detected at significant level (4.3 sigma in the 2007 Gold sample, 7.2 sigma in the 2008 Union sample) if the universe is spatially flat. This result depends, however, crucially on supernovae with a redshift smaller than 0.1, for which the assumption of statistical isotropy and homogeneity is less well established.Comment: 13 pages, 2 figures, major change

    Renormalization-group running of the cosmological constant and the fate of the universe

    Full text link
    For a generic quantum field theory we study the role played by the renormalization-group (RG) running of the cosmological constant (CC) in determining the ultimate fate of the universe. We consider the running of the CC of generic origin (the vacuum energy of quantum fields and the potential energy of classical fields), with the RG scale proportional to the (total energy density)1/4\rm{)^{1/4}} as the most obvious identification. Starting from the present-era values for cosmological parameters we demonstrate how the running can easily provide a negative cosmological constant, thereby changing the fate of the universe, at the same time rendering compatibility with critical string theory. We also briefly discuss the recent past in our scenario.Comment: 9 pages, 7 figures, revtex4; version to appear in PR

    High-Redshift Cosmography

    Get PDF
    We constrain the parameters describing the kinematical state of the universe using a cosmographic approach, which is fundamental in that it requires a very minimal set of assumptions (namely to specify a metric) and does not rely on the dynamical equations for gravity. On the data side, we consider the most recent compilations of Supernovae and Gamma Ray Bursts catalogues. This allows to further extend the cosmographic fit up to z=6.6z = 6.6, i.e. up to redshift for which one could start to resolve the low z degeneracy among competing cosmological models. In order to reliably control the cosmographic approach at high redshifts, we adopt the expansion in the improved parameter y=z/(1+z)y = z/(1+z). This series has the great advantage to hold also for z>1z > 1 and hence it is the appropriate tool for handling data including non-nearby distance indicators. We find that Gamma Ray Bursts, probing higher redshifts than Supernovae, have constraining power and do require (and statistically allow) a cosmographic expansion at higher order than Supernovae alone. Exploiting the set of data from Union and GRBs catalogues, we show (for the first time in a purely cosmographic approach parametrized by deceleration q0q_0, jerk j0j_0, snap s0s_0) a definitively negative deceleration parameter q0q_0 up to the 3σ\sigma confidence level. We present also forecasts for realistic data sets that are likely to be obtained in the next few years.Comment: 16 pages, 6 figures, 3 tables. Improved version matching the published one, additional comments and reference
    • 

    corecore